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Introduction

® Context

O 5G brings new challenges in terms of:
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Introduction

® Context

O These challenges are hard to handle using

classical optimization algorithms, because of:

m  Number of variables
m Dynamically changing environment

m Variety of network demands
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Introduction

® Context

O Obijective

‘ Control Plane

m Make networks smart and robust

O SDN makes network management more

flexible by decoupling the control plane

from the data plane

(a) Traditional Network (b) SDN Network



Introduction

® Context

O Deep Reinforcement Learning (DRL) has achieved incredible performances in

many domains (e.g. robotics and video games)
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Introduction

® Presented use cases

a. Distributed packet routing case

m Propose a Multi-agents DRL for distributed packet routing

m  PRISMA: Network simulator based on ns-3 to evaluate the solution

m Evaluate the impact of information sharing overhead of the approach
b. Routing and allocation of network slices case

m Propose an optimization model for network slice reconfiguration

m Design an RL model to find the best time to reconfigure the network slices



Distributed Routing




Distributed Routing

Challenging cases:
Multi-agent Deep

e Can only exploit local information >
® No complete view of the topology Reinforcement Learning
e Traffic features unknown, e.g., traffic matrix (MADRL)
e Optimize complex metrics related to QoE
Examples: Classical algorithms:
® Wireless ad-hoc networks e AODV
e Multi-domain networks e BGP

e Cloud overlay routing ® Cisco OMP
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Distributed Routing/ h

Multi-Agent Deep Reinforcement Obse(r)vtation Revr\zljard
Learning Approach

Environment:
L. Neighborhood
® Definition

® Application to Distributed Routing :
O Observation (O,): packet destination)
link’s buffer occupation
O Reward (R,): delay to next hop
O Action (A,): next hop index

Action
At

e Objective: minimize the end-to-end
delay for all the packets
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Context

e Related work:
O Deep Q Routing with Communication (DQRC) [X.You et al., IEEE

Transactions on Systems, Man, and Cybernetics, 2020]

O Relational Features for Routing Decision [V. Manfredi et al.,

WoWMoM, 2021]
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Context

Issues with the state of the art:

1. Use non-realistic and non-standard ad-hoc Python based

simulator

2. Do not evaluate the impact of information sharing (overhead)

between agents
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Contributions

1) Provide realistic and standard simulator

v PRISMA: A Packet Routing Simulator for Multi-Agent Reinforcement Learning;
4th International Workshop on Network Intelligence 2022 (NI 2022)

2) Evaluate the information sharing overhead of the MADRL approach

v/ Impact Evaluation of Control Signalling onto Distributed Learning-based Packet

Routing; In 34th Intl. Teletraffic Congress, ITC 2022.
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Contrib 1 : PRISMA

e Existing Simulation Tools
O NS3: Networking Simulator [G. Riley, Modeling and Tools for
Network Simulation, 2010]
O NS3-gym: NS3 and OpenAl Gym [P. Gawtowicz et al., MSWiM,
2019]

& OpenAl ns-3

NETWORK SIMULATOR

® Not adapted for MADRL in Networking
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Contrib 1 : PRISMA

e Goal:
OpenAlGym OpenAlGym OpenAlGym
o Extend NS3-gym to Multi- EEE | | EEE e ] |
E I A Cor

Agent Reinforcement

Learning approach Gatovay

NS3 Simulation
Framework




Contrib 1 : PRISMA

® Features:

O

O 0 O O

TensorBoard
server

A

Training-Forwarding separation [ state
logger

Realistic simulation
Real-time simulation tracking

Fast prototyping
Modularity

A
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Contrib 2 : Impact of signalling

e Goal:
O Evaluate the impact of
implementing MADRL in a

production network
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Contrib 2 : Impact of signalling

e Overview of the approach
Y,=ry+~v- min Qu(oy,ay;0,) (1 —f)

a,,/ EAn/
Where n is the actual node index and n’is the neighbor node index
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Contrib 2 : Impact of signalling

e Overview of the approach

Y, =

T/

+ 7y

min Qn’ (On’7 Unp!, Qn’)

0,1 EA,

(1—1)

Where n is the actual node index and n’is the neighbor node index

O Value sharing

m Sharing the target value and the reward
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Contrib 2 : Impact of signalling

e Overview of the approach

Y, =

T/

+ f)/ : miﬂ Qn/(

a,,/ EAn/

O/

Ay, Qn’

(1=11)

Where n is the actual node index and n’is the neighbor node index

O Model sharing

m Sharing the state and the reward

m Sharing the parameters of Deep-Q network
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Contrib 2 : Impact of signalling

e Experimental setting

O Topology : Abilene (11 nodes)

O Traffic model : Poisson generator

O Traffic matrix : Random uniform distribution
O Model : Deep Q Network
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Contrib 2 : Impact of signalling

® Results
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Reconfiguring Network Slices

® Network Slicing Principle
O The idea is to divide the network infrastructure to multiple logical networks
O A network slice needs to fulfill an end-to-end service demand:
m A network path from the source to the destination providing the required
bandwidth
m A Set of network functions needed by the service
O Goal: allocate slices in order to reduce the resource utilization and thus accept the

maximum number of requests
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Reconfiguring Network Slices

® Network Slice Reconfiguration Example

(d) First two requests (e) Reconfiguration (f) Optimal routing for
leave phase the third request
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Reconfiguring Network Slices

® Network Slicing Problem

O Find the best time to reconfigure the network slices

m Reconfigure more often = high management cost

m Reconfigure less often = suboptimal network usage

° Proposition: Deep-Rec, smart reconfiguration management agent that

chooses when to initiate reconfiguration depending on the traffic dynamics

and network congestion
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Deep-REC

® Action: perform or not a reconfiguration

e State:

a.
b.

Number of minutes since the last reconfiguration
Number of slices added since the last
reconfiguration

Number of slices released since the last
reconfiguration

Current profit

Current time t.

Reward:

O if no reconfiguration

r =0
O if reconfiguration
r=Apr — ApNR — VR

where,
t+3

ApNg = {Zpﬂno reconf at ¢}
k=t

t+3
App = {Zpﬂreconf at t}
k=t

UR : Artificial penalty
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Experimental setting

e Network topology: tal (24 nodes, 55 links, 6 datacenters)

® Frequency of action = 5 minutes

e Artificial cost per reconfiguration =

for 15 minutes
® Slice services chain =5

® 4 types of service considered :

Slice Types VNF chain Latency bw (Mbps)
Web Service NAT-FW-TM-WOC-IDPS 10ms 100
Video Streaming ~ NAT-FW-TM-VOC-IDPS Sms 256

VoIP NAT-FW-TM-FW-NAT 3.5ms 64
Online Gaming NAT-FW-VOC-WOC-IDPS 2.5ms 50

Traffic [normalized]

cost of deploying a VNF X /
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Results

® Learning curves
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Results

Cost per MBits
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Results

O Compared to No-REC, REC-15 and Deep-REC improved

the network cost and profit by 32% to 38% especially

during the congestion period.

O Deep-REC

significantly

reduces

the

number

of

reconfiguration compared to REC-15 by 20% while

keeping the same cost.
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Conclusion

® SDN allows better management of the network.

® Deep Reinforcement Learning is a promising solution to make network devices smart
and reactive to user’s demand.
® Presentation of two use cases:
® Distributed packet routing case

® We proposed a realistic network simulation to test MADRL approach

® We proposed a realistic network simulation to test MADRL approach

® Network slices reconfiguration case

® We proposed Deep-REC, a DRL approach to find the best time to do reconfiguratio
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Any questions ?



