Deep Reinforcement Learning for Network Routing

Redha Abderrahmane ALLICHE

Supervisors:

- Ramon APARICIO-PARDO
- Lucile SASSATELLI

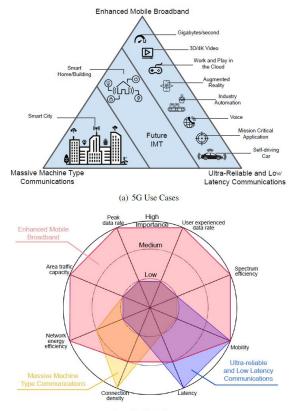
About me

- Oct 2020: Starting the thesis
- Formation:
 - 2020: Master degree in Data Science at the University Paris-Saclay
 - 2018: Bachelor in Telecommunication in Algeria
- Work Experience:
 - 2020: Intern at CNAM : Machine learning projects
 - 2019: Intern at LATMOS/CNRS: DL applied to weather forecasting
 - 2018: Intern at Nokia: Developing tool to configure net-devices

Outline

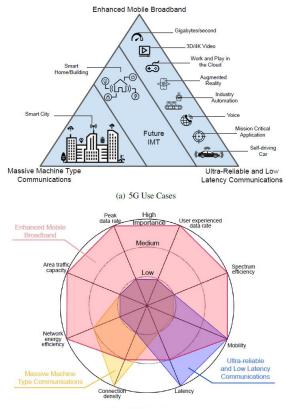
- Introduction and Context
- DRL applied to network routing
 - a. Distributed packet routing case
 - b. Routing and allocation of network slices case
- Conclusion

- Context
 - 5G brings new challenges in terms of:
 - High mobility
 - Massive device connectivity
 - QoS requirements



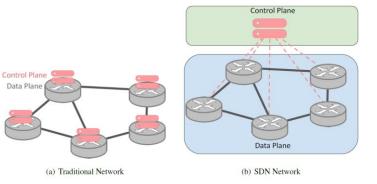
(b) 5G Needs classes

- Context
 - These challenges are hard to handle using classical optimization algorithms, because of:
 - Number of variables
 - Dynamically changing environment
 - Variety of network demands



(b) 5G Needs classes

- Context
 - o Objective
 - Make networks smart and robust
 - SDN makes network management more flexible by decoupling the control plane from the data plane



- Context
 - Deep Reinforcement Learning (DRL) has achieved incredible performances in many domains (e.g. robotics and video games)

Mnih et al. (2015)

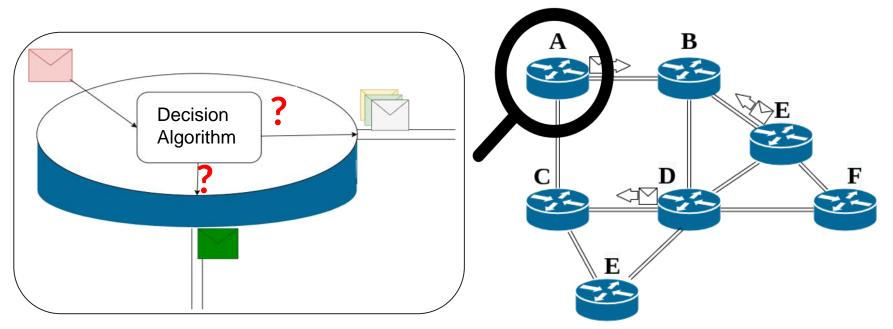
Heess et al. (2017)

Fawzi et al. (2022)

7

- Presented use cases
 - a. Distributed packet routing case
 - Propose a Multi-agents DRL for distributed packet routing
 - PRISMA: Network simulator based on ns-3 to evaluate the solution
 - Evaluate the impact of information sharing overhead of the approach
 - b. Routing and allocation of network slices case
 - Propose an optimization model for network slice reconfiguration
 - Design an RL model to find the best time to reconfigure the network slices

Distributed Routing



Distributed Routing

Challenging cases:

- Can only exploit local information
- No complete view of the topology
- Traffic features unknown, e.g., traffic matrix
- Optimize complex metrics related to QoE

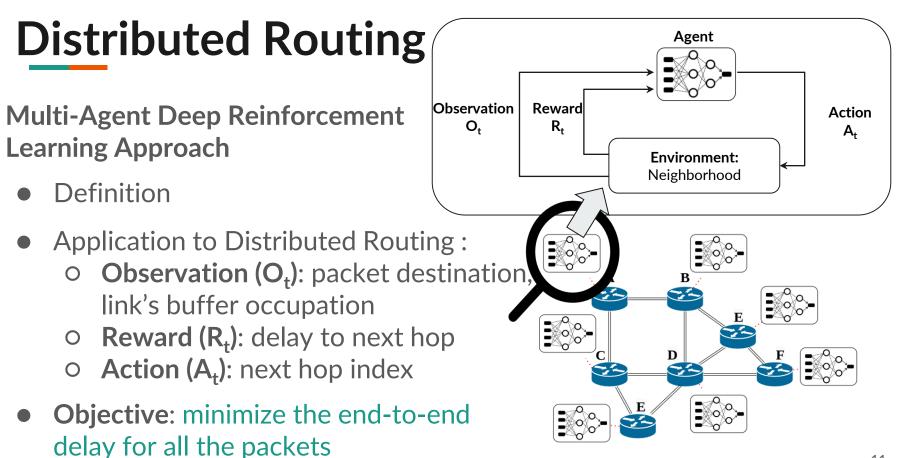
Examples:

- Wireless ad-hoc networks
- Multi-domain networks
- Cloud overlay routing

Classical algorithms:

- AODV
- BGP
- Cisco OMP

Multi-agent Deep Reinforcement Learning (MADRL)



Context

- Related work:
 - Deep Q Routing with Communication (DQRC) [X.You et al., IEEE Transactions on Systems, Man, and Cybernetics, 2020]
 - Relational Features for Routing Decision [V. Manfredi et al., WoWMoM, 2021]

- Issues with the state of the art:
 - 1. Use <u>non-realistic</u> and <u>non-standard</u> ad-hoc Python based simulator
 - 2. Do not evaluate the <u>impact of information sharing (overhead)</u> between agents

Contributions

1) Provide realistic and standard simulator

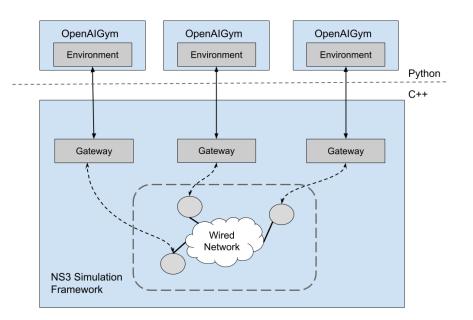
- PRISMA: A Packet Routing Simulator for Multi-Agent Reinforcement Learning;
 4th International Workshop on Network Intelligence 2022 (NI 2022)
- 2) Evaluate the information sharing overhead of the MADRL approach
 - ✓ Impact Evaluation of Control Signalling onto Distributed Learning-based Packet Routing; In 34th Intl. Teletraffic Congress, ITC 2022.

Contrib 1 : PRISMA

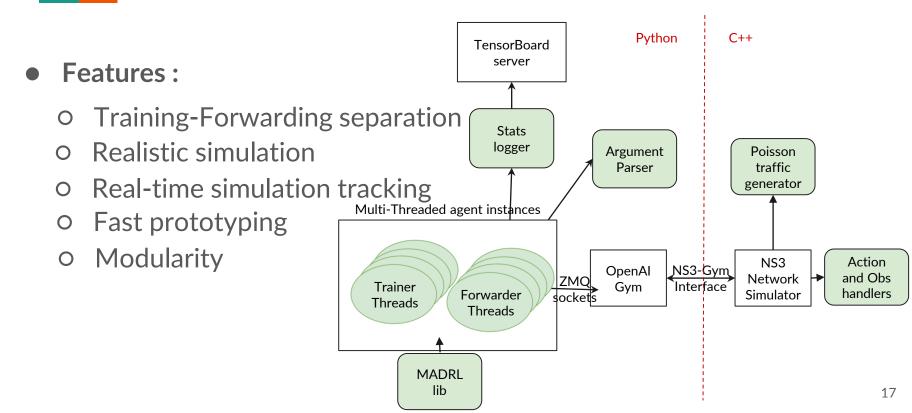
- Existing Simulation Tools
 - NS3 : Networking Simulator [G. Riley, Modeling and Tools for Network Simulation, 2010]
 - NS3-gym : NS3 and OpenAl Gym [P. Gawłowicz et al., MSWiM, 2019]
 OpenAI
 OpenAI
- Not adapted for MADRL in Networking

Contrib 1 : PRISMA

- Goal :
 - Extend NS3-gym to Multi-Agent Reinforcement
 Learning approach

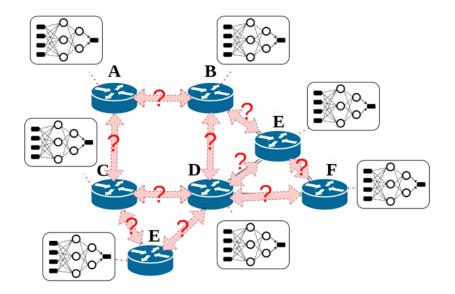


Contrib 1 : PRISMA



• Goal:

 Evaluate the impact of implementing MADRL in a production network



• Overview of the approach

$$Y_{n} = r_{n'} + \gamma \cdot \min_{a_{n'} \in \mathcal{A}_{n'}} Q_{n'}(o_{n'}, a_{n'}; \theta_{n'}) \cdot (1 - f)$$

Where **n** is the actual node index and **n**' is the neighbor node index

• Overview of the approach

$$Y_{n} = r_{n'} + \gamma \cdot \min_{a_{n'} \in \mathcal{A}_{n'}} Q_{n'}(o_{n'}, a_{n'}; \theta_{n'}) \cdot (1 - f)$$

Where **n** is the actual node index and **n**' is the neighbor node index

- Value sharing
 - Sharing the <u>target value</u> and the <u>reward</u>

• Overview of the approach

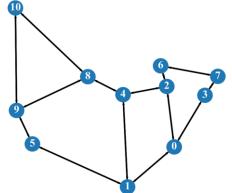
$$Y_n = r_{n'} + \gamma \cdot \min_{a_{n'} \in \mathcal{A}_{n'}} Q_{n'}(o_{n'} \mid a_{n'}; \theta_{n'}) \cdot (1 - f)$$

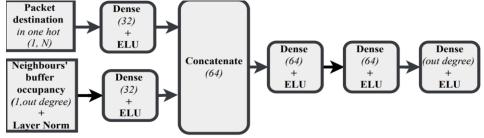
Where \mathbf{n} is the actual node index and \mathbf{n} ' is the neighbor node index

- Model sharing
 - Sharing the <u>state</u> and the <u>reward</u>
 - Sharing the <u>parameters</u> of Deep-Q network

• Experimental setting

- Topology : Abilene (11 nodes)
- Traffic model : Poisson generator
- Traffic matrix : Random uniform distribution
- Model : Deep Q Network





• Results

DQN Routing - Model Sharing Replay Memory Update Signalling Shortest Path Routing ---DQN Routing - Value Sharing Target Update Signalling Oracle Routing -LP(1). Packet (s) Average Cost Per Packet (s) 05.0 07.0 07.0 07.0 Cost Per J 0.50 0.46 0.43 960.40 Average 0.33 0.30 0.28 0.00 0.1 1.5 9 **Control Overhead Ratio** Target Update Period U (s) Target Update Period U (s)

Reconfiguring Network Slices

- Network Slicing Principle
 - The idea is to divide the network infrastructure to multiple logical networks
 - A network slice needs to fulfill an end-to-end service demand:
 - A network path from the source to the destination providing the required bandwidth
 - A Set of network functions needed by the service
 - **Goal:** allocate slices in order to reduce the **resource utilization** and thus accept the **maximum number of requests**

Reconfiguring Network Slices

Network Slice Reconfiguration Example

 $B \rightarrow C$

F→ E

(d) First two requests (e) Reconfiguration (f) Optimal routing for the third request

Reconfiguring Network Slices

- Network Slicing Problem
 - Find the best time to reconfigure the network slices
 - Reconfigure more often \Rightarrow high management cost
 - Reconfigure less often \Rightarrow suboptimal network usage
- **Proposition**: *Deep-Rec*, smart reconfiguration management agent that chooses when to initiate reconfiguration depending on the traffic dynamics and network congestion

Deep-REC

- Action: perform or not a reconfiguration
- State:
 - a. Number of minutes since the last reconfiguration
 - b. Number of slices added since the last reconfiguration
 - c. Number of slices released since the last reconfiguration
 - d. Current profit
 - e. Current time t.

• Reward:

0

• if no reconfiguration

r = 0

if reconfiguration

$$r = \Delta p_R - \Delta p_{NR} - v_R$$

where,
$$\Delta p_{NR} = \{\sum_{k=t}^{t+3} p_k | \text{no reconf at } t\}$$

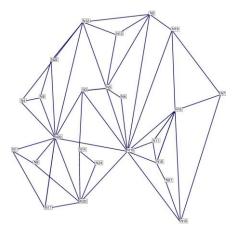
$$\Delta p_R = \{\sum_{k=t}^{t+3} p_k | \text{reconf at } t\}$$

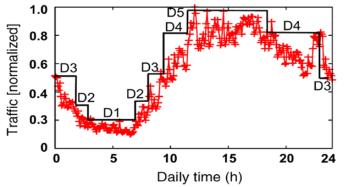
$$v_R : \text{Artificial penalty}$$

Experimental setting

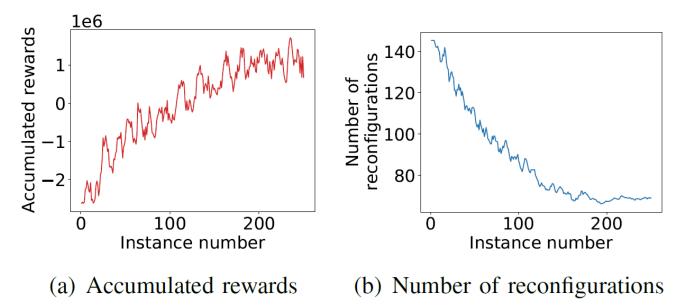
- Network topology: tal (24 nodes, 55 links, 6 datacenters)
- Frequency of action = 5 minutes
- Artificial cost per reconfiguration = cost of deploying a VNF for 15 minutes
- Slice services chain = 5
- 4 types of service considered :

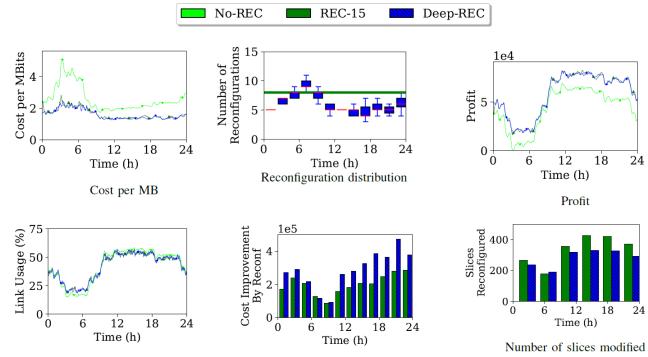
Slice Types	VNF chain	Latency	bw (Mbps)
Web Service	NAT-FW-TM-WOC-IDPS	10ms	100
Video Streaming	NAT-FW-TM-VOC-IDPS	5ms	256
VoIP	NAT-FW-TM-FW-NAT	3.5ms	64
Online Gaming	NAT-FW-VOC-WOC-IDPS	2.5ms	50





• Learning curves



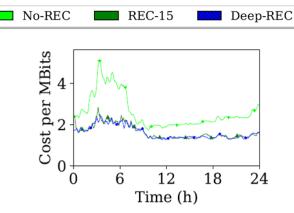


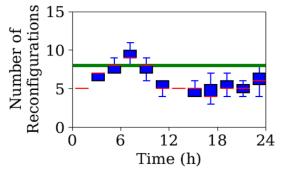
: Percentage of links capacity used

Cost gain per Reconf

Results

- Compared to *No-REC*, *REC-15* and *Deep-REC* improved the network cost and profit by 32% to 38% especially during the congestion period.
- *Deep-REC* significantly reduces the number of reconfiguration compared to *REC-15* by 20% while keeping the same cost.





Conclusion

- SDN allows better management of the network.
- Deep Reinforcement Learning is a promising solution to make network devices smart and reactive to user's demand.
- Presentation of two use cases :
 - Distributed packet routing case
 - We proposed a realistic network simulation to test MADRL approach
 - We proposed a realistic network simulation to test MADRL approach
 - Network slices reconfiguration case
 - We proposed *Deep-REC*, a DRL approach to find the best time to do reconfiguratio

Any questions ?