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Introduction

● Context

○ 5G brings new challenges in terms of: 

■ High mobility 

■ Massive device connectivity

■ QoS requirements
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Introduction

● Context

○ These challenges are hard to handle using 

classical optimization algorithms, because of: 

■ Number of variables

■ Dynamically changing environment 

■ Variety of network demands
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Introduction

● Context

○ Objective

■ Make networks smart and robust

○ SDN makes network management more 

flexible by decoupling the control plane 

from the data plane
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Introduction

● Context

○ Deep Reinforcement Learning (DRL) has achieved incredible performances in 

many domains (e.g. robotics and video games) 

7Mnih et al. (2015) Heess et al. (2017) Fawzi et al. (2022)



Introduction

● Presented use cases 

a. Distributed packet routing case

■ Propose a Multi-agents DRL for distributed packet routing

■ PRISMA: Network simulator based on ns-3 to evaluate the solution

■ Evaluate the impact of information sharing overhead of the approach

b. Routing and allocation of network slices case

■ Propose an optimization model for network slice reconfiguration

■ Design an RL model to find the best time to reconfigure the network slices
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Distributed Routing
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Decision

Algorithm
?
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Distributed Routing

Challenging cases: 

● Can only exploit local information
● No complete view of the topology
● Traffic features unknown, e.g., traffic matrix
● Optimize complex metrics related to QoE
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Multi-agent Deep 

Reinforcement Learning 

(MADRL)

Examples:
● Wireless ad-hoc networks
● Multi-domain networks
● Cloud overlay routing

Classical algorithms: 
● AODV
● BGP
● Cisco  OMP



Distributed Routing
Multi-Agent Deep Reinforcement 
Learning Approach

● Definition
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● Application to Distributed Routing :
○ Observation (Ot): packet destination, 

link’s buffer occupation
○ Reward (Rt): delay to next hop
○ Action (At): next hop index

● Objective: minimize the end-to-end 
delay for all the packets

Environment:
Neighborhood

Observation 
Ot

Action
At

Reward 
Rt

Agent



Context

12

● Related work:

○ Deep Q Routing with Communication (DQRC) [X.You et al., IEEE 

Transactions on Systems, Man, and Cybernetics, 2020]

○ Relational Features for Routing Decision [V. Manfredi et al., 

WoWMoM, 2021]



Context
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● Issues with the state of the art:

1. Use non-realistic and non-standard ad-hoc Python based 

simulator

2. Do not evaluate the impact of information sharing (overhead)

between agents



Contributions
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1) Provide realistic and standard simulator 

✓ PRISMA: A Packet Routing Simulator for Multi-Agent Reinforcement Learning; 

4th International Workshop on Network Intelligence 2022 (NI 2022)

2) Evaluate the information sharing overhead of the MADRL approach

✓ Impact Evaluation of Control Signalling onto Distributed Learning-based Packet 

Routing; In 34th Intl. Teletraffic Congress, ITC 2022.



Contrib 1 : PRISMA
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● Existing Simulation Tools

○ NS3 : Networking Simulator [G. Riley, Modeling and Tools for 

Network Simulation, 2010]

○ NS3-gym : NS3 and OpenAI Gym [P.  Gawłowicz et al., MSWiM, 

2019]

● Not adapted for MADRL in Networking



Contrib 1 : PRISMA
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● Goal : 

○ Extend NS3-gym to Multi-

Agent Reinforcement 

Learning approach



○ Modularity

● Features : 

○ Realistic simulation

Contrib 1 : PRISMA
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○ Training-Forwarding separation

○ Real-time simulation tracking
○ Fast prototyping

NS3-Gym
Interface

OpenAI 
Gym

NS3
Network
Simulator

C++Python

Poisson 
traffic 

generator

Action 
and Obs 
handlers

MADRL
lib

TensorBoard
server

Stats 
logger Argument 

Parser

ZMQ 
sockets

Trainer
Threads

Forwarder
Threads

Multi-Threaded agent instances



Contrib 2 : Impact of signalling
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● Goal : 

○ Evaluate the impact of 

implementing MADRL in a 

production network



Contrib 2 : Impact of signalling
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● Overview of the approach

Where n is the actual node index and  n’ is the neighbor node index



Contrib 2 : Impact of signalling
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● Overview of the approach

○ Value sharing

■ Sharing the target value and the reward

Where n is the actual node index and  n’ is the neighbor node index



Contrib 2 : Impact of signalling
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● Overview of the approach

○ Model sharing

■ Sharing the state and the reward

■ Sharing the parameters of Deep-Q network

Where n is the actual node index and  n’ is the neighbor node index



Contrib 2 : Impact of signalling
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● Experimental setting
○ Topology : Abilene (11 nodes)
○ Traffic model : Poisson generator 
○ Traffic matrix : Random uniform distribution
○ Model : Deep Q Network



Contrib 2 : Impact of signalling
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● Results



Reconfiguring Network Slices 

● Network Slicing Principle

○ The idea is to divide the network infrastructure to multiple logical networks

○ A network slice needs to fulfill an end-to-end service demand: 

■ A network path from the source to the destination providing the required 

bandwidth

■ A Set of network functions needed by the service

○ Goal: allocate slices in order to reduce the resource utilization and thus accept the 

maximum number of requests
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Reconfiguring Network Slices 

● Network Slice Reconfiguration Example
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Reconfiguring Network Slices 

● Network Slicing Problem

○ Find the best time to reconfigure the network slices

■ Reconfigure more often ⇒ high management cost

■ Reconfigure less often ⇒ suboptimal network usage
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● Proposition:  Deep-Rec, smart reconfiguration management agent that 

chooses when to initiate reconfiguration depending on the traffic dynamics 

and network congestion



Deep-REC
● Action: perform or not a reconfiguration

● State:

a. Number of minutes since the last reconfiguration

b. Number of slices added since the last 

reconfiguration 

c. Number of slices released since the last 

reconfiguration 

d. Current profit

e. Current time t.

27

● Reward: 

○ if no reconfiguration

○ if reconfiguration

where,

: Artificial penalty



Experimental setting

● Network topology: ta1 (24 nodes, 55 links, 6 datacenters)

● Frequency of action = 5 minutes

● Artificial cost per reconfiguration =  cost of deploying a VNF 

for 15 minutes

● Slice services chain = 5

● 4 types of service considered : 
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Results

● Learning curves 
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Results
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Results
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○ Compared to No-REC, REC-15 and Deep-REC improved

the network cost and profit by 32% to 38% especially

during the congestion period.

○ Deep-REC significantly reduces the number of

reconfiguration compared to REC-15 by 20% while

keeping the same cost.



Conclusion
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● SDN allows better management of the network.

● Deep Reinforcement Learning is a promising solution to make network devices smart 

and reactive to user’s demand.

● Presentation of two use cases :

● Distributed packet routing case

● We proposed a realistic network simulation to test MADRL approach

● We proposed a realistic network simulation to test MADRL approach

● Network slices reconfiguration case

● We proposed Deep-REC, a DRL approach to find the best time to do reconfiguratio



Any questions ?

33


