
Deep Reinforcement Learning for
Network Routing

Redha Abderrahmane ALLICHE
Supervisors:
● Ramon APARICIO-PARDO
● Lucile SASSATELLI

1

About me

● Oct 2020: Starting the thesis

● Formation:

○ 2020: Master degree in Data Science at the University Paris-Saclay

○ 2018: Bachelor in Telecommunication in Algeria

● Work Experience:

○ 2020: Intern at CNAM : Machine learning projects

○ 2019: Intern at LATMOS/CNRS: DL applied to weather forecasting

○ 2018: Intern at Nokia: Developing tool to configure net-devices
2

Outline
● Introduction and Context

● DRL applied to network routing

a. Distributed packet routing case

b. Routing and allocation of network slices case

● Conclusion

3

Introduction

● Context

○ 5G brings new challenges in terms of:

■ High mobility

■ Massive device connectivity

■ QoS requirements

4

Introduction

● Context

○ These challenges are hard to handle using

classical optimization algorithms, because of:

■ Number of variables

■ Dynamically changing environment

■ Variety of network demands

5

Introduction

● Context

○ Objective

■ Make networks smart and robust

○ SDN makes network management more

flexible by decoupling the control plane

from the data plane

6

Introduction

● Context

○ Deep Reinforcement Learning (DRL) has achieved incredible performances in

many domains (e.g. robotics and video games)

7Mnih et al. (2015) Heess et al. (2017) Fawzi et al. (2022)

Introduction

● Presented use cases

a. Distributed packet routing case

■ Propose a Multi-agents DRL for distributed packet routing

■ PRISMA: Network simulator based on ns-3 to evaluate the solution

■ Evaluate the impact of information sharing overhead of the approach

b. Routing and allocation of network slices case

■ Propose an optimization model for network slice reconfiguration

■ Design an RL model to find the best time to reconfigure the network slices

8

Distributed Routing

9

Decision

Algorithm
?

?

Distributed Routing

Challenging cases:

● Can only exploit local information
● No complete view of the topology
● Traffic features unknown, e.g., traffic matrix
● Optimize complex metrics related to QoE

10

Multi-agent Deep

Reinforcement Learning

(MADRL)

Examples:
● Wireless ad-hoc networks
● Multi-domain networks
● Cloud overlay routing

Classical algorithms:
● AODV
● BGP
● Cisco OMP

Distributed Routing
Multi-Agent Deep Reinforcement
Learning Approach

● Definition

11

● Application to Distributed Routing :
○ Observation (Ot): packet destination,

link’s buffer occupation
○ Reward (Rt): delay to next hop
○ Action (At): next hop index

● Objective: minimize the end-to-end
delay for all the packets

Environment:
Neighborhood

Observation
Ot

Action
At

Reward
Rt

Agent

Context

12

● Related work:

○ Deep Q Routing with Communication (DQRC) [X.You et al., IEEE

Transactions on Systems, Man, and Cybernetics, 2020]

○ Relational Features for Routing Decision [V. Manfredi et al.,

WoWMoM, 2021]

Context

13

● Issues with the state of the art:

1. Use non-realistic and non-standard ad-hoc Python based

simulator

2. Do not evaluate the impact of information sharing (overhead)

between agents

Contributions

14

1) Provide realistic and standard simulator

✓ PRISMA: A Packet Routing Simulator for Multi-Agent Reinforcement Learning;

4th International Workshop on Network Intelligence 2022 (NI 2022)

2) Evaluate the information sharing overhead of the MADRL approach

✓ Impact Evaluation of Control Signalling onto Distributed Learning-based Packet

Routing; In 34th Intl. Teletraffic Congress, ITC 2022.

Contrib 1 : PRISMA

15

● Existing Simulation Tools

○ NS3 : Networking Simulator [G. Riley, Modeling and Tools for

Network Simulation, 2010]

○ NS3-gym : NS3 and OpenAI Gym [P. Gawłowicz et al., MSWiM,

2019]

● Not adapted for MADRL in Networking

Contrib 1 : PRISMA

16

● Goal :

○ Extend NS3-gym to Multi-

Agent Reinforcement

Learning approach

○ Modularity

● Features :

○ Realistic simulation

Contrib 1 : PRISMA

17

○ Training-Forwarding separation

○ Real-time simulation tracking
○ Fast prototyping

NS3-Gym
Interface

OpenAI
Gym

NS3
Network
Simulator

C++Python

Poisson
traffic

generator

Action
and Obs
handlers

MADRL
lib

TensorBoard
server

Stats
logger Argument

Parser

ZMQ
sockets

Trainer
Threads

Forwarder
Threads

Multi-Threaded agent instances

Contrib 2 : Impact of signalling

18

● Goal :

○ Evaluate the impact of

implementing MADRL in a

production network

Contrib 2 : Impact of signalling

25

● Overview of the approach

Where n is the actual node index and n’ is the neighbor node index

Contrib 2 : Impact of signalling

25

● Overview of the approach

○ Value sharing

■ Sharing the target value and the reward

Where n is the actual node index and n’ is the neighbor node index

Contrib 2 : Impact of signalling

25

● Overview of the approach

○ Model sharing

■ Sharing the state and the reward

■ Sharing the parameters of Deep-Q network

Where n is the actual node index and n’ is the neighbor node index

Contrib 2 : Impact of signalling

22

● Experimental setting
○ Topology : Abilene (11 nodes)
○ Traffic model : Poisson generator
○ Traffic matrix : Random uniform distribution
○ Model : Deep Q Network

Contrib 2 : Impact of signalling

28

● Results

Reconfiguring Network Slices

● Network Slicing Principle

○ The idea is to divide the network infrastructure to multiple logical networks

○ A network slice needs to fulfill an end-to-end service demand:

■ A network path from the source to the destination providing the required

bandwidth

■ A Set of network functions needed by the service

○ Goal: allocate slices in order to reduce the resource utilization and thus accept the

maximum number of requests

24

Reconfiguring Network Slices

● Network Slice Reconfiguration Example

25

Reconfiguring Network Slices

● Network Slicing Problem

○ Find the best time to reconfigure the network slices

■ Reconfigure more often ⇒ high management cost

■ Reconfigure less often ⇒ suboptimal network usage

26

● Proposition: Deep-Rec, smart reconfiguration management agent that

chooses when to initiate reconfiguration depending on the traffic dynamics

and network congestion

Deep-REC
● Action: perform or not a reconfiguration

● State:

a. Number of minutes since the last reconfiguration

b. Number of slices added since the last

reconfiguration

c. Number of slices released since the last

reconfiguration

d. Current profit

e. Current time t.

27

● Reward:

○ if no reconfiguration

○ if reconfiguration

where,

: Artificial penalty

Experimental setting

● Network topology: ta1 (24 nodes, 55 links, 6 datacenters)

● Frequency of action = 5 minutes

● Artificial cost per reconfiguration = cost of deploying a VNF

for 15 minutes

● Slice services chain = 5

● 4 types of service considered :

28

Results

● Learning curves

29

Results

30

Results

31

○ Compared to No-REC, REC-15 and Deep-REC improved

the network cost and profit by 32% to 38% especially

during the congestion period.

○ Deep-REC significantly reduces the number of

reconfiguration compared to REC-15 by 20% while

keeping the same cost.

Conclusion

32

● SDN allows better management of the network.

● Deep Reinforcement Learning is a promising solution to make network devices smart

and reactive to user’s demand.

● Presentation of two use cases :

● Distributed packet routing case

● We proposed a realistic network simulation to test MADRL approach

● We proposed a realistic network simulation to test MADRL approach

● Network slices reconfiguration case

● We proposed Deep-REC, a DRL approach to find the best time to do reconfiguratio

Any questions ?

33

