

Monte Carlo Search Algorithms for Network Traffic Engineering

 $\label{eq:chen_bar} \begin{array}{l} \mbox{Chen DANG}^{1,2}, \mbox{Cristina BAZGAN}^2, \mbox{Tristan CAZENAVE}^2, \\ \mbox{Morgan CHOPIN}^1, \mbox{Pierre-Henri WUILLEMIN}^3 \end{array}$

¹Orange Labs, Châtilion, France ²Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, F-75016 Paris, France ³Sorbonne Université, CNRS, UMR 7606, LIP6, F-75005 Paris, France

2022 November

Contents

Introduction

- Problematic
- State of the Art
- 2 Monte Carlo Based Approach for Network Traffic Engineering
 - Modelling with NRPA
 - Improvements of NRPA

3 Experiments & Result

- Environment and Dataset
- Comparison with state-of-the-art heuristics

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
●○○	000000	000000	00000

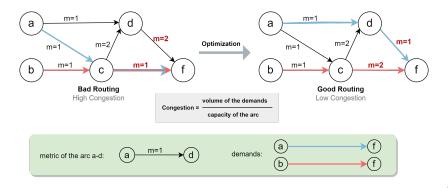
Contents

Introduction

- Problematic
- State of the Art
- Monte Carlo Based Approach for Network Traffic Engineering
 Modelling with NRPA
 - Improvements of NRPA

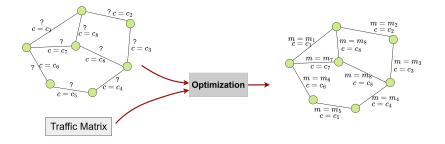
3 Experiments & Result

- Environment and Dataset
- Comparison with state-of-the-art heuristics


4 Conclusion

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
O O O	000000	000000	00000
Problema	tic		

- + Easy to implement
- How to choose the weights to minimize the traffic congestion?


Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
	000000	000000	00000
Problema	tic		

- + Easy to implement
- How to choose the weights to minimize the traffic congestion?

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
	000000	000000	00000
Problema	tic		

- + Easy to implement
- How to choose the weights to minimize the traffic congestion?

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
○●○	000000	000000	00000
Problemat	ic		

- + Easy to implement
- How to choose the weights to minimize the traffic congestion?

Formally, we consider the following minimization problem

Min Cong Shortest Path Routing (MIN-CON-SPR) **Input:** A graph G = (V, A), a set of terminals $W \subseteq V$, a set $D \subseteq W \times W$ of demands

Output: A set of weights (metrics) *M* that minimize the maximum congestion over all edges in the resulting routing.

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
○○●	000000	000000	00000

State of the Art

Internet Traffic Engineering by Optimizing OSPF Weights, Bernard Fortz and Mikkel Thorup, 2000

• optimizing the weight settings for a given set of demands is NP-hard

Exact method:

An Integer Programming Algorithm for Routing Optimization in IP Networks, Andreas Bley, 2011

Heuristics:

Local search

Internet Traffic Engineering by Optimizing OSPF Weights, Bernard Fortz and Mikkel Thorup, 2000

Genetic Algorithm

A Hybrid Genetic Algorithm for the Weight Setting Problem in OSPF/IS-IS Routing, Buriol et al, 2005

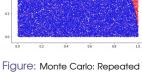
Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	●○○○○○	000000	00000

Contents

Introduction

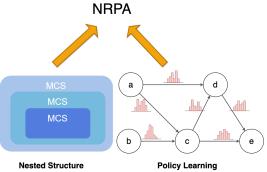
- Problematic
- State of the Art

2 Monte Carlo Based Approach for Network Traffic Engineering


- Modelling with NRPA
- Improvements of NRPA

3 Experiments & Result

- Environment and Dataset
- Comparison with state-of-the-art heuristics


4 Conclusion

Introduction 000	Monte Carlo Based Approach for Netwo ○●0000	rk Traffic Engineering	Experiments & Result 000000	Conclusion 00000
Nested	Rollout Policy Adapt	ation		
	ve faster algorithm that als e Nested Rollout Policy Ac	0	0 1	lem.
Estimate of pi: 3	13872	NB	ΡΔ	
08 -				

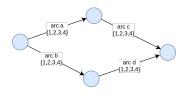
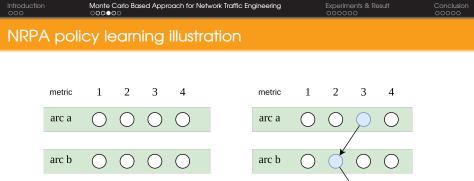
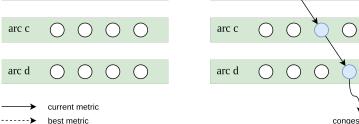
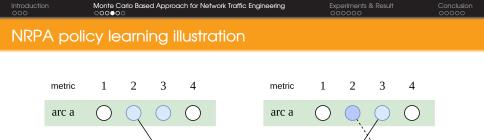

0.4

FIGURE: Monte Carlo: Repeated sampling to obtain numerical results


Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	○○●○○○	000000	00000


NRPA policy learning illustration

Suppose that we have a graph:


- the arcs are a, b, c, d
- each arc can choose 1, 2, 3 or 4 as the weight

congestion: 10

A darker colour means more likely to be selected

arc b

arc c

arc d

congestion: 6

arc b

arc c

arc d

current metric best metric

A darker colour means more likely to be selected

congestion: 3

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	○000●○	000000	00000

NRPA Pseudocode

Algorithm NRPA(level, policy)

- 1: if level = 0 then
- 2: cong, metric = simulation(policy)
- 3: return cong, metric

4: **else**

- 5: for N iterations do
- 6: cong, metric = NRPA(level-1, policy)
- 7: update_policy(BestCong, BestMetrics)
- 8: end for
- 9: return BestCong, BestMetrics

10: end if

Number of iterations: N

Number of simulations $= N^L$

• choice is made according to a weight w_i

Improvements of NRPA

Considered variant of NRPA

- Stablized NRPA
 - use multiple simulations instead of one
 - more stable
 - more time-consuming

Proposed improvement for NRPA

- Force Exploration
 - Choose a random weight for a random arc if the current solution is already explored
 - Force exploration instead of exploitation
 - Useful for small-medium sized graphs
- Unique Metric
 - Weights on all arcs have different values

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	000000		00000

Contents

Introduction

- Problematic
- State of the Art

2 Monte Carlo Based Approach for Network Traffic Engineering

- Modelling with NRPA
- Improvements of NRPA

3 Experiments & Result

- Environment and Dataset
- Comparison with state-of-the-art heuristics

4 Conclusion

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	000000	○●○○○○	00000

Experiments

Implementation

implemented in C++

Experimental environment

Experiments performed on a server with a 64-core Intel(R) Xeon(R)
 Gold 5218 CPU and 125 GB of memory

Introduction	

Dataset

SNDLib

Figure: Atlanta

Figure: France

Random Generated Graphs

- random
- waxman

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Co
000	000000	○00●○○	OC
Variants	of NRPA		

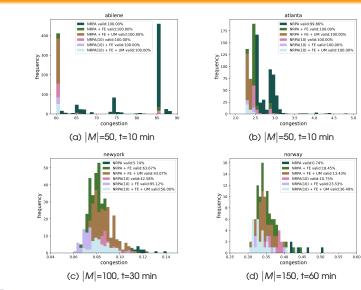


Figure: Distribution of the congestion values with all constraints on SNDlib graphs. FE: Force Exploration, UM: Unique Metric, NRPA(10): Stablized NRPA with 10 simulations

Introduction	

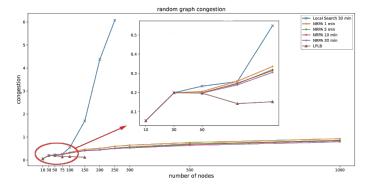

Comparison with other heuristics

Table: Maximum congestion value of state-of-the-art heuristics and NRPA. The value is in **bold** if it is the best one among heuristics. A value is followed by * if equal to the lower bound LPLB. Each graph is tested in a fixed time and each value is averaged on 5 independent executions.

name	IVI	IAI	IKI	Unit	InvCap	Local	NRPA	LPLB
				OSPF	OSPF	Search		
abilene	12	30	132	187.55	89.48	60.42	60.412	60.411
atlanta	15	44	210	3.26	3.37	2.22	2.22	2.18
france	25	90	300	4.12	4.12	2.53	2.56	2.41
nobel-us	14	42	91	37.15	37.15	24.4	24.7	24.2
nobel-eu	28	82	378	13.31	13.31	10.68	10.67*	10.67
brain	161	332	14311	1.415	1.415	0.962	0.903*	0.903
rand50a	50	132	2450	7.9	7.9	5.55	5.77	5.55
rand50b	50	278	2450	2.88*	2.88*	2.88*	2.88*	2.88
rand100a	100	278	9900	15.71	15.71	10.42	9.59	9.35
rand100b	100	534	9900	4.15	4.15	4.38	3.85	3.76
wax50a	50	142	2450	6.46	6.46	4.63	4.66	4.59
wax50b	50	298	2450	2.279*	2.279*	2.284	2.279*	2.279
wax100a	100	284	9900	17.46	17.46	15.049	15.048	15.048
wax100b	100	492	9900	5.51	5.51	4.14	4.04	3.44

				& Result	Conclusion 00000
--	--	--	--	----------	---------------------

Comparison with other heuristics

Figure: Congestion with respect to the number of the nodes

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	000000		●0000

Contents

Introduction

- Problematic
- State of the Art

Monte Carlo Based Approach for Network Traffic Engineering
 Modelling with NRPA

Improvements of NRPA

3 Experiments & Result

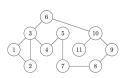
- Environment and Dataset
- Comparison with state-of-the-art heuristics

4 Conclusion

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	000000	000000	0●000

Conclusion

- Model the MIN-CON-SPR problem with Monte Carlo method NRPA
- Propose and improve the NRPA for the problem
- NRPA still has many potential for improvements


Introduction 000	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion 00000

Work in Progress: HSPR

In general, the calculation of the congestion takes more than 90% of the total execution time.

We propose Hierarchical Shortest Path Routing to calculate the congestion

- based on a state-of-the-art approach for shortest path
- very fast calculation for huge telecommunication networks
- network structure is known and fixed, metrics are always changing

(a) Example Graph

(b) Small Balanced Separator

(d) Elimination Tree

(5)

Work in Progress: Warm-Starting NRPA

Some NRPA executions can be stuck in a local minimum very quickly, and waste time exploring in a wrong direction

Warm-start NRPA

- reject the executions which don't work well
- continue the **good** executions
- restart often

Introduction	Monte Carlo Based Approach for Network Traffic Engineering	Experiments & Result	Conclusion
000	000000		0000●
End			

Thank you