
Graph Convolutional Reinforcement Learning

for Collaborative Queuing Agents

Journée NetOpt 2022
Hassan Fawaz – Telecom SudParis

Julien Lesca, Pham Tran Anh Quang, Jérémie Leguay, Djamal Zeghlache, and Paolo Medagliani

November 10th, 2022

Contents

 Problematic
o Traditional approaches are lagging behind

o Need to add quality-of-service to queue management

 Related Works
o On Machine Learning for Network Traffic Management

 Our approach
o A DGN-aided Weighted Fair Queuing algorithm

o DQN centralized and distributed benchmarks

o Target networks and experience replay

2

Contents

 Results
o Topology and parameters

o TCP and UDP scenarios

o Future works

 Conclusion
o Summary

o Further works

3

Problematic

 There is a need for novel approaches to queueing and load balancing

o Traditional techniques are failing to keep up with the demand

o Higher throughput values and lower delays are expected

 Active queue management as a smart networking tool

o Algorithms such as RED, CoDel, PIE, etc help reduce congestion and delay

o They do not help with QoS or SLA guarantees

 Deep Reinforcement Learning for smart queue management

o In our work we aim to use deep reinforcement learning to smartly manage queues

o A DRL agent would decide how packets are being served

o Its objective is to meet stringent requirements (throughput and delay) for a set of classified

flows

4

Related Works: On RL- based traffic management

5

* References cited on the final slide

SD-WAN Use Case

6

Figure 1. SD-WAN network with 5 branches

o An enterprise network headquarters (HQ),

and five remote branches are

interconnected

o By MPLS and broadband internet links

o A controller is placed at the headquarter

site

o Access routers (ARs) are responsible for the

interconnection.

o The ML agents are placed on the

numbered nodes

o The training is done centrally, and the

execution is distributed in the

aforementioned nodes

AR Device Structure

7

Figure 2. AR Device Structure

o The system architecture is split into two control

entities

o In a slow loop, the routing agents takes

decisions on how to balance the flows

o In a faster loop, a QoS agent applies a QoS

policy, i.e., the WFQ based RL approach we

describe later

o In practice, we expect the routing control loop

to be much slower than the QoS one

o This validates our current separation of the two

tasks

Our Approach: DRL assisted WFQ

o We implemented the WFQ approach illustrated in the figure below (in ns3)

o We classify network flows into three main groups: Gold, Silver, and Bronze in descending priority

o Gold, silver, and bronze groups for multimedia, business critical, and non-critical applications, respectively.

o We use a DRL agent, specifically a Deep Q-Network agent, to help optimize the weight selection continuously

8

Figure 3. WFQ implementation

Average rate of flow k Total link capacity

Weight of flow k

Graph Convolutional Reinforcement Learning-DGN

9Figure 4. DGN Agents: HQ1 and Branch 1

o Agents are situated at ingress nodes across the

network, such as the numbered ones in Figure 1

o DGN combines the ideas of graph neural networks

and deep reinforcement learning

o The agents are embedded in a graph G = (V,E),

whose topology is related to the computer network

in our scenario

o The existence of an edge between two agents in

this graph means that they can exchange

information

o Each agent has a set of neighbours, specified in

what we call an adjacency matrix

Graph Convolutional Reinforcement Learning-DGN (2)

10Figure 4. DGN Agents: HQ1 and Branch 1

o DGN has three modules

o An encoder: A Multi-layer perceptron that takes the

local observation and extracts relevant features

o A set of convolutional layers: which use attention

mechanisms and helps learn how to best abstract

relationships between agents

o A Q-network: The module which outputs the best

actions on the weights with the objective of

maximizing the long-term reward

o A multiple convolutional layer (h) module can be

used

o The exchange of features between agents will permit

the agents to obtain local knowledge from agents

that are at a distance h from them

Target Network and Experience Replay

11

DGN uses two classic deep learning mechanisms

 Target Network

o To avoid instability in training, we utilize a target network in addition to the main neural network

o This target is a copy of the main one and stores the Q-values

o In DGN we use a slow update

 Experience Replay

o DGN implements a replay (experience) buffer, i.e., samples are stored in a memory and afterwards

randomly sampled for training

Set of Observations

Next Set of Observations
Agent Actions

Agent Rewards

Adjacency Matrices

Target Network Parameters

Main Network Parameters Update Smoothness

Target Network and Experience Replay (2)

12

o With enough experiences in the buffer the training phase can begin

o We sample batches from the buffer and train with the objective of minimizing the loss

Loss

Batch Size

Number of agents

Q-value

Discount factor

Description of the learning environment

13

 The observation

o The observation is represented by a tuple of six values: the throughput and delay values of each

class of flows as served by the agent

o Because this is a continuous space, we discretize the values

 Possible actions

o At each step, the DGN agent acts on the weight of each class and either increases or decreases it

o With 3 flow groups considered. A total of 8 actions are possible

o The value of the increase/decrease is constant and pre-set as a parameter

Description of the learning environment (2)

14

 Agent Rewards

o The agent is rewarded every time it meets a requirement (throughput or delay) for any flow class

o It is penalized by the same value if it does not meet said requirement

o The reward could as such be in the negative, i.e., a penalty

o Gold flows have higher reward values than the silver and the bronze, respectively

Binary values for meeting (+1) or violating (-1) the requirement Reward values, constant, weighted by flow importance

Deep Q-Learning Benchmark: Distributed Approach

15

Figure 5. DQN agent

o Same set of states, observations, actions, and

rewards as in DGN

o Does not embed attention or any innate agent

cooperation mechanisms

o No inter-agent communications

o Incorporates target networks and experience

replay buffers

o Trained by minimizing the loss

Deep Q-Learning Benchmark: Centralized Approach

16

o Same set of states, observations, actions, and rewards as in DGN

o Agent act as one unit

o They share the same set of states and observations

o They act on the environment collectively, and are issued a joint reward

Figure 6. Centralized MADQN as proposed in [7]

Simulations and Results: Topology

17

Figure 7. Considered topology for agent simulations

o We consider that the load
balancing is already performed

o The MPLS and internet sections
are thus considered independtly

o We consider both UDP and TCP
traffic

o The traffic sources are
heterogenous to motivate agent
cooperation

o Branch 1 produces gold and silver
flows, Branch 2 silver and bronze,
and so on

o The algorithms are simulated in
an ns-3 enviroment

Simulations and Results: Benchmarks

18

Approach Abbreviation Agent Communication/Cooperation Notes

Graph Convolutional Multi-Agent DGN Attention model, feature exchange Small overhead/

signaling

Centralized Multi-Agent DQN CDQN Shared observations, actions, rewards Extensive memory

requirements

Decentralized Multi-Agent DQN DDQN No communication or cooperation No overhead

Priority Queuing PQ No communication or cooperation No overhead

o CDQN is unrealistic to implement and does not scale well at all

o DDQN is a benchmark considered to stress the importance of inter-agent cooperation

Simulations and Results: Topology Parameters

19

Simulations and Results: Learning Parameters

20

Simulation and Results: Agent Convergence

21

Figure 8. Agent convergence

o DGN convergence is verified by tracking the loss function

o Distributed DQN does not seem to converge even though the rewards tends to improve

Simulation and Results: UDP Traffic – Throughput (1)

22

o The throughput requirements are 5/10/30 Mbps
for gold, silver, and bronze group flows

o DGN meets all these requirements

o Distributed MADQN does not with the bronze
flows sitting at around 4 Mbps below the required
mark

o The results reflect the lack of convergence in the
case of DDQN

Figure 9. DGN vs DDQN, UDP, Throughput

Simulation and Results: UDP Traffic – Throughput (2)

23

o CDQN gives throughput results at around 5.5,
11.4, and 31 Mbps for bronze, silver, and gold
flow groups

o CDQN meets all the required thresholds

o We compare to a classic Priority Queuing (PQ)
algorithm

o PQ serves packet in the queue in strict
descending priority

o PQ fails to meet the bronze flow group
requirements which register a throughput at
about 1 Mbps only

o The centralized nature of CDQN helps cover for
the lack of agent communication observed with
DDQN

Figure 10. CDQN vs PQ, UDP, Throughput

Simulation and Results: UDP Traffic – Delay (1)

24

o The targets for the end-to-end delay for the flow
groups are set at 0.15, 0.3, and 0.4 seconds for
gold, silver, and bronze, respectively

o DGN was able to meet all these requirements

o For DDQN the silver flow requirements are
violated in more than half the cases

o Out of 6 total constraints, DDQN meets half

Figure 11. DGN vs DDQN, UDP, Delay

Simulation and Results: UDP Traffic – Delay (2)

25

o Similar to the throughput case, CDQN was able to
meet the delay demands with median values at
around 0.128, 0.209, and 0.298 seconds for the gold,
silver, and bronze flow groups

o This is not the case for priority queuing where the
maximum delay values are at around 2 and 3
seconds, respectively

o The centralized nature of this DQN implementation
again helps meet the target demands

o PQ is not intelligent enough to meet the silver flow
delay thresholds even though it can meet their
throughput demands

Figure 12. CDQN vs PQ, UDP, Delay

Simulation and Results: TCP Traffic – Throughput (1)

26

o We now consider TCP traffic

o The required throughput thresholds are still the
same for all the flows at 5, 10, and 30 Mbps for
the bronze, silver, and gold flows

o TCP traffic provides a more intricate scenario, the
weights need to account for TCP’s innate
congestion control mechanism

o Nonetheless, DGN was able to meet the all the
flow requirements, unlike DDQN which had the
throughput values for the gold flows at about 28
Mbps

Figure 13. DGN vs DDQN, TCP, Throughput

Simulation and Results: TCP Traffic – Throughput (2)

27

o Again, CDQN can cover for the lack of agent
communications problem present in DDQN

o The threshold for all the flows groups are met

o The same cannot be said for Priority Queuing
which slightly violated the demands for the silver
flows and significantly violated those of the
bronze flows (at about 0.7 Mbps only)

Figure 14. CDQN vs PQ, TCP, Throughput

Simulation and Results: TCP Traffic – Delay (1)

28

o The delay requirements are set at 0.1, 0.15, and
0.2 for the bronze, silver, and gold flows

o DGN is able to meet all with median values at
about 0.04 seconds for the gold, 0.13 for the
silver group flows, and slightly less than 0.15
seconds for the bronze flows

o DDQN is able in this case to meet the demands as
well. Nonetheless it can be noted that the latter
provides in general higher average delays while
also exhibiting inconsistencies

Figure 15. DGN vs DDQN, TCP, Delay

Simulation and Results: TCP Traffic – Delay (2)

29

o Finally, as in the case of UDP traffic, CMDQN is
able to match DGN in terms of meeting the end-
to-end delay requirements

o Priority queuing violates the requirements for
both the silver and bronze flows in several
instances

Figure 16. CDQN vs PQ, TCP, Delay

Simulation and Results: Scalability (1)

30

o We additionally seek to test our approach in a
larger scale scenario

o To this end we consider a topology based on the
ION-NY network topology seen in Fig. 17

o We consider 17 sources and 3 receiving nodes

o The agents are only present at peripheral nodes
which are connected to hosts

o Inter-agent communications are possible with
interconnected nodes and with the receiving end
nodes as well

o The approach is this time build in Mininet, a
network emulator

Figure 17. ION Network Topology

Simulation and Results: Scalability (2)

31

o In terms of throughput, the proposed DGN
approach can meet the required thresholds

o The median value for a gold flow is at around
3300 Kbps, for silver flows at 1300, and for bronze
flows at about 600 Kbps, all above the
requirements

Figure 18. DGN Throughput Result

Simulation and Results: Scalability (2)

32

o Our DGN proposal can also sustain the flow
requirements in terms of end-to-end delay

o The maximum delay values sit at around 0.18,
0.45, and 0.88 seconds for the gold, silver and
bronze flows, respectively

o These are below the required thresholds of 0.2,
0.5, and 0.9 seconds for gold, silver, and bronze,
respectively

Figure 19. DGN Delay Results

Conclusion

 Graph Convolutional Reinforcement Learning for Smart Queue Management
o We proposed a DGN based multi-agent approach to our smart queuing problem

o The agents are tasked with continuously setting the weights for a WFQ algorithm place at ingress nodes

o The objective is to meet SLA requirements for a set of classified network flow groups

o These groups are in descending order of priorities: gold, silver and bronze

o Agent communication is limited to neighbourhood and DGN can learn how best to communicate

Multi-Agent Deep Q-Learning
o As benchmarks, we propose two DQN based approaches to the same problem

o The first is completely distributed with no inter-agent communication or cooperation

o The second is fully centralized with the agents having the same states, observation and rewards while acting as
a unit on the environment

33

Conclusion

 Results
o DGN is always able to meet the throughput and end-to-end delay requirements

o Distributed DQN always violates certain requirements whether in delay or throughput

o This is due to the lack of any sort of agent communication or cooperation

o Centralized DQN is however able to meet the required thresholds

o The centralized, and fully cooperative in a sense, nature of this DGN implementation makes up for the former

o Our learning approaches prove to be more efficient in handling the problem than classic approaches like PQ

34

Conclusion

 Future avenues to explore
o Multi-layer architectures and the significance of the convolutional layers on agent communications

o Different neighbourhood requirements and variable neighbourhood for DGN

o Joint smart queuing – smart load balancing approaches

35

References

36

[1] M. Kim and B. Eng, “Deep reinforcement learning based active queue management for iot networks,” PhD Thesis, 2019.

[2] M. M. Roselló, “Multi-path scheduling with deep reinforcement learning,” in 2019 European Conference on Networks and Communications (EuCNC), pp. 400–405,

IEEE, 2019.

[3] M. Guo, Q. Guan, W. Chen, F. Ji, and Z. Peng, “Delay-optimal scheduling for heavy-tailed and light-tailed flows via reinforcement learning,” in 2018 IEEE

International Conference on Communication Systems (ICCS), pp. 292–296, IEEE, 2018.

[4] V. Balasubramanian, M. Aloqaily, O. Tunde-Onadele, Z. Yang, and M. Reisslein, “Reinforcing cloud environments via index policy for bursty workloads,” in NOMS

2020-2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–7, IEEE, 2020.

[5] B. Liao, G. Zhang, Z. Diao, and G. Xie, “Precise and adaptable: Leveraging deep reinforcement learning for gap-based multipath scheduler,” in 2020 IFIP

Networking Conference (Networking), pp. 154–162, IEEE, 2020.

[6] M. Bachl, J. Fabini, and T. Zseby, “Lfq: Online learning of per-flow queuing policies using deep reinforcement learning,” in 2020 IEEE 45th Conference on Local

Computer Networks (LCN), pp. 417–420, 2020.

