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Problematic

 There is a need for novel approaches to queueing and load balancing

o Traditional techniques are failing to keep up with the demand

o Higher throughput values and lower delays are expected

 Active queue management as a smart networking tool

o Algorithms such as RED, CoDel, PIE, etc help reduce congestion and delay

o They do not help with QoS or SLA guarantees 

 Deep Reinforcement Learning for smart queue management

o In our work we aim to use deep reinforcement learning to smartly manage queues

o A DRL agent would decide how packets are being served

o Its objective is to meet stringent requirements (throughput and delay) for a set of classified 

flows
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Related Works: On RL- based traffic management
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* References cited on the final slide



SD-WAN Use Case
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Figure 1.  SD-WAN network with 5 branches

o An enterprise network headquarters (HQ), 

and five remote branches are 

interconnected 

o By MPLS and broadband internet links

o A controller is placed at the headquarter 

site 

o Access routers (ARs) are responsible for the 

interconnection.

o The ML agents are placed on the 

numbered nodes

o The training is done centrally, and the 

execution is distributed in the 

aforementioned nodes 



AR Device Structure
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Figure 2. AR Device Structure  

o The system architecture is split into two control 

entities

o In a slow loop, the routing agents takes 

decisions on how to balance the flows

o In a faster loop, a QoS agent applies a QoS 

policy, i.e., the WFQ based RL approach we 

describe later

o In practice, we expect the routing control loop 

to be much slower than the QoS one

o This validates our current separation of the two 

tasks



Our Approach: DRL assisted WFQ

o We implemented the WFQ approach illustrated in the figure below (in ns3)

o We classify network flows into three main groups: Gold, Silver, and Bronze in descending priority

o Gold, silver, and bronze groups for multimedia, business critical, and non-critical applications, respectively.

o We use a DRL agent, specifically a Deep Q-Network agent, to help optimize the weight selection continuously
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Figure 3.  WFQ implementation

Average rate of flow k Total link capacity

Weight of flow k



Graph Convolutional Reinforcement Learning-DGN

9Figure 4.  DGN Agents: HQ1 and Branch 1

o Agents are situated at ingress nodes across the 

network, such as the numbered ones in Figure 1

o DGN combines the ideas of graph neural networks 

and deep reinforcement learning

o The agents are embedded in a graph G = (V,E), 

whose topology is related to the computer network 

in our scenario

o The existence of an edge between two agents in 

this graph means that they can exchange 

information

o Each agent has a set of neighbours, specified in 

what we call an adjacency matrix



Graph Convolutional Reinforcement Learning-DGN (2)

10Figure 4.  DGN Agents: HQ1 and Branch 1

o DGN has three modules

o An encoder: A Multi-layer perceptron that takes the 

local observation and extracts relevant features 

o A set of convolutional layers: which use attention 

mechanisms and helps learn how to best abstract 

relationships between agents

o A Q-network: The module which outputs the best 

actions on the weights with the objective of 

maximizing the long-term reward

o A multiple convolutional layer (h) module can be 

used

o The exchange of features between agents will permit 

the agents to obtain local knowledge from agents 

that are at a distance h from them



Target Network and Experience Replay
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DGN uses two classic deep learning mechanisms 

 Target Network

o To avoid instability in training, we utilize a target network in addition to the main neural network

o This target is a copy of the main one and stores the Q-values

o In DGN we use a slow update

 Experience Replay

o DGN implements a replay (experience) buffer, i.e., samples are stored in a memory and afterwards 

randomly sampled for training

Set of Observations

Next Set of Observations
Agent Actions

Agent Rewards

Adjacency Matrices

Target Network Parameters

Main Network Parameters Update Smoothness



Target Network and Experience Replay (2)
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o With enough experiences in the buffer the training phase can begin

o We sample batches from the buffer and train with the objective of minimizing the loss

Loss

Batch Size

Number of agents

Q-value

Discount factor



Description of the learning environment
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 The observation

o The observation is represented by a tuple of six values: the throughput and delay values of each 

class of flows as served by the agent

o Because this is a continuous space, we discretize the values

 Possible actions

o At each step, the DGN agent acts on the weight of each class and either increases or decreases it

o With 3 flow groups considered. A total of 8 actions are possible

o The value of the increase/decrease is constant and pre-set as a parameter 



Description of the learning environment (2)
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 Agent Rewards

o The agent is rewarded every time it meets a requirement (throughput or delay) for any flow class

o It is penalized by the same value if it does not meet said requirement

o The reward could as such be in the negative, i.e., a penalty 

o Gold flows have higher reward values than the silver and the bronze, respectively

Binary values for meeting (+1) or violating (-1) the requirement Reward values, constant, weighted by flow importance



Deep Q-Learning Benchmark: Distributed Approach
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Figure 5. DQN agent 

o Same set of states, observations, actions, and 

rewards as in DGN

o Does not embed attention or any innate agent 

cooperation mechanisms

o No inter-agent communications

o Incorporates target networks and experience 

replay buffers

o Trained by minimizing the loss



Deep Q-Learning Benchmark: Centralized Approach
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o Same set of states, observations, actions, and rewards as in DGN

o Agent act as one unit

o They share the same set of states and observations

o They act on the environment collectively, and are issued a joint reward 

Figure 6. Centralized MADQN as proposed in [7]



Simulations and Results: Topology 

17

Figure 7. Considered topology for agent simulations

o We consider that the load 
balancing is already performed

o The MPLS and internet sections 
are thus considered independtly 

o We consider both UDP and TCP 
traffic

o The traffic sources are 
heterogenous to motivate agent 
cooperation

o Branch 1 produces gold and silver 
flows, Branch 2 silver and bronze, 
and so on

o The algorithms are simulated in 
an ns-3 enviroment



Simulations and Results: Benchmarks
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Approach Abbreviation Agent Communication/Cooperation Notes

Graph Convolutional Multi-Agent DGN Attention model, feature exchange Small overhead/ 

signaling

Centralized Multi-Agent DQN CDQN Shared observations, actions, rewards Extensive memory 

requirements

Decentralized Multi-Agent DQN DDQN No communication or cooperation No overhead

Priority Queuing PQ No communication or cooperation No overhead

o CDQN is unrealistic to implement and does not scale well at all

o DDQN is a benchmark considered to stress the importance of inter-agent cooperation



Simulations and Results: Topology Parameters
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Simulations and Results: Learning Parameters
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Simulation and Results: Agent Convergence
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Figure 8. Agent convergence

o DGN convergence is verified by tracking the loss function 

o Distributed DQN does not seem to converge even though the rewards tends to improve



Simulation and Results: UDP Traffic – Throughput (1)
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o The throughput requirements are 5/10/30 Mbps 
for gold, silver, and bronze group flows

o DGN meets all these requirements

o Distributed MADQN does not with the bronze 
flows sitting at around 4 Mbps below the required 
mark

o The results reflect the lack of convergence in the 
case of DDQN

Figure 9. DGN vs DDQN, UDP, Throughput 



Simulation and Results: UDP Traffic – Throughput (2)
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o CDQN gives throughput results at around 5.5, 
11.4, and 31 Mbps for bronze, silver, and gold 
flow groups

o CDQN meets all the required thresholds

o We compare to a classic Priority Queuing (PQ) 
algorithm

o PQ serves packet in the queue in strict 
descending priority

o PQ fails to meet the bronze flow group 
requirements which register a throughput at 
about 1 Mbps only

o The centralized nature of CDQN helps cover for 
the lack of agent communication observed with 
DDQN

Figure 10. CDQN vs PQ, UDP, Throughput 



Simulation and Results: UDP Traffic – Delay (1)
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o The targets for the end-to-end delay for the flow 
groups are set at 0.15, 0.3, and 0.4 seconds for 
gold, silver, and bronze, respectively

o DGN was able to meet all these requirements

o For DDQN the silver flow requirements are 
violated in more than half the cases

o Out of 6 total constraints, DDQN meets half

Figure 11. DGN vs DDQN, UDP, Delay



Simulation and Results: UDP Traffic – Delay (2)
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o Similar to the throughput case, CDQN was able to 
meet the delay demands with median values at 
around 0.128, 0.209, and 0.298 seconds for the gold, 
silver, and bronze flow groups 

o This is not the case for priority queuing where the 
maximum delay values are at around 2 and 3 
seconds, respectively 

o The centralized nature of this DQN implementation 
again helps meet the target demands

o PQ is not intelligent enough to meet the silver flow 
delay thresholds even though it can meet their 
throughput demands

Figure 12. CDQN vs PQ, UDP, Delay



Simulation and Results: TCP Traffic – Throughput (1)
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o We now consider TCP traffic 

o The required throughput thresholds are still the 
same for all the flows at 5, 10, and 30 Mbps for 
the bronze, silver, and gold flows

o TCP traffic provides a more intricate scenario, the 
weights need to account for TCP’s innate 
congestion control mechanism

o Nonetheless, DGN was able to meet the all the 
flow requirements, unlike DDQN which had the 
throughput values for the gold flows at about 28 
Mbps

Figure 13. DGN vs DDQN, TCP, Throughput



Simulation and Results: TCP Traffic – Throughput (2)
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o Again, CDQN can cover for the lack of agent 
communications problem present in DDQN

o The threshold for all the flows groups are met

o The same cannot be said for Priority Queuing 
which slightly violated the demands for the silver 
flows and significantly violated those of the 
bronze flows (at about 0.7 Mbps only)

Figure 14. CDQN vs PQ, TCP, Throughput 



Simulation and Results: TCP Traffic – Delay (1)

28

o The delay requirements are set at 0.1, 0.15, and 
0.2 for the bronze, silver, and gold flows

o DGN is able to meet all with median values at 
about 0.04 seconds for the gold, 0.13 for the 
silver group flows, and slightly less than 0.15 
seconds for the bronze flows 

o DDQN is able in this case to meet the demands as 
well. Nonetheless it can be noted that the latter 
provides in general higher average delays while 
also exhibiting inconsistencies

Figure 15. DGN vs DDQN, TCP, Delay



Simulation and Results: TCP Traffic – Delay (2)
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o Finally, as in the case of UDP traffic, CMDQN is 
able to match DGN in terms of meeting the end-
to-end delay requirements

o Priority queuing violates the requirements for 
both the silver and bronze flows in several 
instances  

Figure 16. CDQN vs PQ, TCP, Delay



Simulation and Results: Scalability (1)
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o We additionally seek to test our approach in a 
larger scale scenario

o To this end we consider a topology based on the 
ION-NY network topology seen in Fig. 17

o We consider 17 sources and 3 receiving nodes 

o The agents are only present at peripheral nodes 
which are connected to hosts 

o Inter-agent communications are possible with 
interconnected nodes and with the receiving end 
nodes as well

o The approach is this time build in Mininet, a 
network emulator

Figure 17. ION Network Topology



Simulation and Results: Scalability (2)
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o In terms of throughput, the proposed DGN 
approach can meet the required thresholds

o The median value for a gold flow is at around 
3300 Kbps, for silver flows at 1300, and for bronze 
flows at about 600 Kbps, all above the 
requirements

Figure 18. DGN Throughput Result



Simulation and Results: Scalability (2)
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o Our DGN proposal can also sustain the flow 
requirements in terms of end-to-end delay

o The maximum delay values sit at around 0.18, 
0.45, and 0.88 seconds for the gold, silver and 
bronze flows, respectively 

o These are below the required thresholds of 0.2, 
0.5, and 0.9 seconds for gold, silver, and bronze, 
respectively

Figure 19. DGN Delay Results



Conclusion

 Graph Convolutional Reinforcement Learning for Smart Queue Management
o We proposed a DGN based multi-agent approach to our smart queuing problem

o The agents are tasked with continuously setting the weights for a WFQ algorithm place at ingress nodes

o The objective is to meet SLA requirements for a set of classified network flow groups

o These groups are in descending order of priorities: gold, silver and bronze

o Agent communication is limited to neighbourhood and DGN can learn how best to communicate

Multi-Agent Deep Q-Learning
o As benchmarks, we propose two DQN based approaches to the same problem

o The first is completely distributed with no inter-agent communication or cooperation

o The second is fully centralized with the agents having the same states, observation and rewards while acting as 
a unit on the environment
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Conclusion

 Results
o DGN is always able to meet the throughput and end-to-end delay requirements 

o Distributed DQN always violates certain requirements whether in delay or throughput

o This is due to the lack of any sort of agent communication or cooperation

o Centralized DQN is however able to meet the required thresholds

o The centralized, and fully cooperative in a sense, nature of this DGN implementation makes up for the former

o Our learning approaches prove to be more efficient in handling the problem than classic approaches like PQ
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Conclusion

 Future avenues to explore
o Multi-layer architectures and the significance of the convolutional layers on agent communications

o Different neighbourhood requirements and variable neighbourhood for DGN

o Joint smart queuing – smart load balancing approaches
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