Smart column generation solver for multi-commodity flow problems

Enrico Bettiol, Pierre Fouilhoux, Roland Grappe, Mathieu Lacroix, Joseph Le Roux, Lucas Létocart, Sébastien Martin, Youcef Magnouche, Alexandre Schulz, Emiliano Traversi, Roberto Wolfler Calvo

10/11/2022

Outline

Problem definition

Formulations

Baseline algorithm

Project

- 1 Dual Ascent
- 3 Cutting Planes
- 2 Smart Pricing
- 4 Smart Matheuristic

Input

- ▶ Directed graph G = (V, A),
- Arc capacity $c_a \in \mathbb{Z}_+$ (MB/s),
- Arc unitary routing cost $r_a \in \mathbb{Z}_+$,
- Set K of demands with for each $k \in K$:
 - $s_k \in V$: source of the demand k,
 - $t_k \in V$: target of the demand k,
 - $b_k \in V$: bandwith of the demand k.

Unsplittable Multicommodity Flow Problem (UMFP)

Find for each demand $k \in K$ an $s_k t_k$ -path p_k^* such that:

the capacities are satisfied (the total bandwith of the demands routed through an arc is no more than its capacity):

$$\sum_{k \in K: a \in p_k^*} b_k \le c_a$$

the sum of the costs of the paths is minimum:

$$\sum_{k \in K} \left(b_k \times \sum_{a \in p_k^*} r_a \right)$$

Compact Formulation

Variables

$$x_a^k = \begin{cases} 1 & \text{if } k \text{ is routed through arc } a, \\ 0 & \text{otherwise,} \end{cases}$$

for all arcs $a \in A$ and all demands $k \in K$.

$$\min \sum_{a \in A} r_a \sum_{k \in K} b_k x_a^k$$

$$\sum_{a \in \delta^{\text{out}}(v)} x_a^k - \sum_{a \in \delta^{\text{in}}(v)} x_a^k = \begin{cases} b_k & \text{if } v = s_k, \\ -b_k & \text{if } v = t_k, \\ 0 & \text{otherwise,} \end{cases} \quad \forall v \in V, \forall k \in K,$$

$$(1)$$

$$\sum_{k \in K} b_k x_a^k \le c_a \qquad \forall a \in A,$$

$$(2)$$

$$x_a^k \in \{0, 1\} \qquad \forall k \in K, a \in A.$$

$$(3)$$

Extended Formulation

Notations

- For a demand $k \in K$, let P_k denote the set of $s_k t_k$ -paths,
- For a path p and an arc a, let

$$\chi_{a,p} = \begin{cases} 1 & \text{if } a \text{ belongs to } p, \\ 0 & \text{otherwise.} \end{cases}$$

Extended Formulation

Variables

$$x_p = \begin{cases} 1 & \text{if } k \text{ is routed through path } p, \\ 0 & \text{otherwise,} \end{cases}$$

for all demands $k \in K$ and all paths $p \in P_k$.

$$\min \sum_{a \in A} r_a \sum_{k \in K} b_k \sum_{p \in P_k} \chi_{a,p} x_p$$

$$\sum_{p \in P_k} x_p = 1 \qquad \forall k \in K, \quad (4)$$

$$\sum_{k \in K} b_k \sum_{p \in P_k} \chi_{a,p} x_p \le c_a \qquad \forall a \in A, \quad (5)$$

$$x_p \in \{0,1\} \qquad \forall k \in K, p \in P_k. \quad (6)$$

Column generation and rounding based approach

Heuristic algorithm

- 1. Compute the linear relaxation of the extended formulation
- 2. Apply rounding procedure to obtain a solution

Linear relaxation

Solve the linear relaxation with column generation.

- > λ : dual variables associated with inequalities (4),
- μ : dual variables associated with inequalities (5).

Pricing problem

Looking for a path $\bar{p} \in P_{\bar{k}}$ with negative reduced cost:

$$b_{\bar{k}}\sum_{a\in\bar{p}}(r_a+\mu_a)-\lambda_{\bar{k}}<0$$

It reduces to compute a shortest path with nonnegative costs (polynomial).

Let x^* denote the computed optimal solution of the linear relaxation.

Rounding procedure

Try several rounding attempts and return the best solution found.

Rounding attempt

- 1. Randomly order the demands
- 2. For each demand $k \in K$ (following the order):
 - 2.1 Let $\bar{P}_k \subseteq P_k$ be the set of paths p such that:
 - ► $x_p^* > 0$,
 - the remaining capacities are enough to route k through p.

2.2 If
$$\bar{P}_k = \emptyset$$
:

- 2.2.1 Compute an $s_k t_k$ -shortest path p_k^* considering only arcs having remaining capacity no less than b_k . If no such a path exists, STOP.
- 2.3 Else:

2.3.1 Sample a path p_k^* in \bar{P}_k with probability

$$\frac{x_p^*}{\sum_{p\in\bar{P}_k}x_p^*} \qquad \text{for all paths } p\in\bar{P}_k$$

2.4 Route k through p_k^\ast and decrease arc capacities accordingly.

Algorithm improvements

Final objectives

Using Machine learning and Combinatorial Optimization, improve the baseline algorithm by:

- decreasing its running time, especially the time necessary to solve the linear relaxation,
- improving the gap:
 - finding better solutions,
 - improving the quality of the lower bound (linear relaxation).

1 - Dual Ascent

The Dual Ascent method:

- generates dual feasible solutions for the linear relaxation of the problem;
- is faster than simplex-based methods;
- ▶ is based on a *parametric relaxation* of the original SP problem;
- is based on a Lagrangian relaxation of the problem combined with sub-gradient optimization;
- is suitable to solve the *restricted master problem* in a column generation framework.

The generated dual feasible solution:

- provides a strong bound;
- is obtained by solving simpler and smaller independent subproblems.

Comparison with classic Lagrangian relaxation

Given a generic problem P:

$$\begin{array}{ll} \min & c^{\top}x\\ \text{s. t.} & Ax = b\\ & x \ge 0 \end{array}$$

(Classic) Lagrangian relaxation $\forall \lambda \in \mathbb{R}^m$:

$$\phi(\lambda) = \min_{x \ge 0} \quad (c - A^{\top} \lambda)^{\top} x + \lambda^{\top} b$$

The problem:

$$\max_{\lambda \in \mathbb{R}^m} \phi(\lambda)$$

is the dual of P.

Formulation

Notation:

- $M = \{1, \dots, m\}$: set of objects (e.g. customers) (rows)
- ▶ $N = \{1, ..., n\}$: set of subsets of objects (e.g. feasible routes) (columns)
- ▶ $R_j \subset M$, $j \in N$: subsets of objects (e.g. customers visited in route j)
- \blacktriangleright c_j : cost of subset j
- ▶ $N_i \subset N := \{j \in N | i \in R_j\}$: set of columns *covering* row i

Find a minimum-cost family of subsets R_j , $j \in N$ which is a partition of M.

Formulation

Example

$$\begin{array}{lll} \min & \sum_{j \in N} c_j x_j & \min & c_1 x_1 + c_2 x_2 + c_3 x_3 \\ \text{s. t. } & \sum_{j \in N_i} x_j = 1 & \forall i \in M & \text{s. t. } \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ x_j \in \{0, 1\} & \forall j \in N & x_1, x_2, x_3 \in \{0, 1\}. \end{array}$$

Formulation (Primal, linear relaxation)

(P) min
$$z_P = \sum_{j \in N} c_j x_j$$

s. t. $\sum_{j \in N_i} x_j = 1$ $\forall i \in M$ $[u_i]$
 $x_j \ge 0$ $\forall j \in N$

Dual problem formulation

(D)
$$\max z_D = \sum_{i \in M} u_i$$

s. t.
$$\sum_{i \in R_j} u_i \le c_j \qquad \forall j \in N$$
$$u_i \in \mathbb{R} \qquad \forall i \in M$$

Introducing new variables

Replace variables

Replace variable x_j by $|R_j|$ variables $y_j^i \in \{0,1\}$ for $i \in R_j$:

• $y_j^i = 1 \iff$ row i is covered by column j;

Associate positive weights $q_i > 0$ with rows:

$$x_j = \sum_{i \in R_j} \frac{q_i}{q(R_j)} y_j^i$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

where

$$q(R_j) := \sum_{i \in R_j} q_i$$

If
$$x_j = 1$$
 then $y_j^i = 1 \ \forall i \in R_j$
If $x_j = 0$ then $y_j^i = 0 \ \forall i \in R_j$

Reformulation

Parametric relaxation (PR) of SP problem

$$\min z_{RP}(q) = \sum_{j \in N} \sum_{i \in R_j} c_j \frac{q_i}{q(R_j)} y_j^i$$
(7)

s. t.
$$\sum_{j \in N_i} \sum_{k \in R_j} \frac{q_k}{q(R_j)} y_j^k = 1 \qquad \forall i \in M$$
(8)

$$\sum_{j \in \mathcal{N}_i} y_j^i = 1 \qquad \forall i \in M \tag{9}$$

$$y_j^i \ge 0$$
 $\forall i \in M, \ j \in N$ (10)

Lagrangian relaxation

We relax constraints (8) with vector of multipliers $\lambda \in \mathbb{R}^m$:

$$\begin{array}{ll} \min \quad z_{LRP}(\lambda,q) = \sum_{i \in M} (\sum_{j \in N_i} q_i \frac{(c_j - \lambda(R_j))}{q(R_j)} y_j^i + \lambda_i) \\ \text{s. t.} \quad \sum_{j \in N_i} y_j^i = 1 \\ & \qquad \forall i \in M \\ & \qquad y_j^i \ge 0 \\ \end{array} \qquad \qquad \forall i \in M, \ j \in N \end{array}$$

where $\lambda(R_j) = \sum_{i \in R_j} \lambda_i$. This is *separable* into *m* independent problems. Let

$$\tilde{c}_j := \frac{(c_j - \lambda(R_j))}{q(R_j)}.$$

Solutions of a subproblem

For each $i \in M$, each subproblem is:

$$\begin{split} \min \ z_{LRP}^i(\lambda,q) &= \sum_{j \in N_i} q_i \tilde{c}_j y_j^i + \lambda_i \\ \text{s. t.} \quad \sum_{j \in N_i} y_j^i = 1 \\ y_j^i &\geq 0 \\ \end{split} \qquad \forall j \in N. \end{split}$$

Let $j_i \in N_i$ such that

$$\tilde{c}_{j_i} = \min_{j \in N_i} \tilde{c}_j$$

The solution is given by:

$$y_j^i = \begin{cases} 1 \text{ if } j = j_i, \\ 0 \text{ otherwise} \end{cases}$$

 $z^i_{LRP}(\lambda,q) = \tilde{c}_{j_i}q_i + \lambda_i.$

Dual feasible solution

$$z_{LRP}(\lambda, q) = \sum_{i \in M} (\tilde{c}_{j_i}(\lambda, q)q_i + \lambda_i)$$

Theorem The optimal solution of the decomposed problem provides a feasible dual solution:

$$u_i := \tilde{c}_{j_i}(\lambda, q)q_i + \lambda_i$$

where j_i is defined above, with dual value equal to $z_{LRP}(\lambda, q)$.

Idea of the proof It is easy to check that $\sum_{i \in R_i} u_i \leq c_j \quad \forall j \in N.$

Corollary For all $\lambda \in \mathbb{R}^m$, q > 0:

$$z_{LRP}(\lambda, q) \le z_D^*$$

where z_D^* is the optimal value of the dual problem (D).

The Classical Lagrangian Relaxation (CLR)

$$\begin{split} \min \ z_{CLR}(\lambda) &= \sum_{j \in N} (c_j - \lambda(R_j)) x_j + \sum_{i \in M} \lambda_i \quad s.t. \quad 0 \leq x_j \leq 1 \quad \forall j \in N \end{split}$$

Let $\hat{c_j}(\lambda) := c_j - \lambda(R_j)$

Solution

Let $H \subset N, H := \{j \in N \mid \hat{c}_j(\lambda) < 0\}$. Therefore: $x_j = 1$ if $j \in H$ and 0 otherwise. $z_{CLR}(\lambda) = \sum_{j \in H} \hat{c}_j(\lambda) + \sum_{i \in M} \lambda_i$

Theorem $z_{LRP}(\lambda, q) \ge z_{CLR}(\lambda)$

What we are doing in the project

Adapt the DA to our problem

- inequalities instead of equalities
- coefficients greater than one everywhere
- Compare with other dual ascent approaches
- Use DA for removing LP solver

3 - Cutting planes

Capacity inequalities

- ► Volumes of objects ⇒ demand bandwiths,
- Capacity of the knapsack \Rightarrow arc capacity.

Inequalities valid for the knapsack polytope can be used to strengthen the linear relaxation of UMFP

Cover inequalities

For any arc $a \in A,$ a cover C of a is a subset of K satisfying $\sum_{k \in C} b^k > c_a.$

 $\sum_{k \in C} \left(\sum_{p \in P_k} \chi_{a,p} x_p \right) \le |C| - 1$

for all arcs $a \in A$ and for all minimal covers C of a (11)

Lagrangian Decomposition based formulation

- Duplicate variables in the compact formulation,
- Dualize the linking equations,
- Apply Dantzig-Wolfe reformulation for both types of variables

$$\min \sum_{a \in A} r_a \sum_{k \in K} b_k x_a^k$$

$$\sum_{a \in \delta^{\text{out}}(v)} x_a^k - \sum_{a \in \delta^{\text{in}}(v)} x_a^k = \begin{cases} 1 & \text{if } v = s_k, \\ -1 & \text{if } v = t_k, \\ 0 & \text{otherwise,} \end{cases} \quad \forall v \in V, \forall k \in K,$$

$$(12)$$

$$\sum_{k \in K} b_k y_a^k \le c_a \qquad \forall a \in A,$$

$$(13)$$

$$x_a^k = y_a^k \qquad \forall k \in K, a \in A,$$

$$(14)$$

$$x_a^k \in \{0, 1\} \qquad \forall k \in K, a \in A.$$

$$(15)$$

Lagrangian Decomposition based formulation

▶ P_k : set of $s_k t_k$ -paths for $k \in K$

▶ B_a : set of patterns, ie sets of demands which can all be routed through arc a at the same time, for $a \in A$

$$\min \sum_{a \in A} r_a \sum_{k \in K} b_k \sum_{p \in P_k} \chi_{a,p} x_p$$

$$\sum_{p \in P_k} x_p = 1 \qquad \forall k \in K, \quad (16)$$

$$\sum_{b \in B_a} y_b = 1 \qquad \forall a \in A, \quad (17)$$

$$\sum_{p \in P_k} \chi_{a,p} x_p = \sum_{b \in B_a} \chi_{a,b} y_b \quad \forall a \in A, \forall k \in K, \quad (18)$$

$$x_p \in \{0,1\} \qquad \forall k \in K, p \in P_k, \quad (19)$$

$$y_b \in \{0,1\} \qquad \forall a \in A, b \in B_a. \quad (20)$$

Lagrangian Decomposition based formulation

▶ P_k : set of $s_k t_k$ -paths for $k \in K$

▶ B_a : set of patterns, ie sets of demands which can all be routed through arc a at the same time, for $a \in A$

$$\min \sum_{a \in A} r_a \sum_{k \in K} b_k \sum_{p \in P_k} \chi_{a,p} x_p$$

$$\sum_{p \in P_k} x_p = 1 \qquad \forall k \in K, \quad (21)$$

$$\sum_{b \in B_a} y_b \leq 1 \qquad \forall a \in A, \quad (22)$$

$$\sum_{p \in P_k} \chi_{a,p} x_p \leq \sum_{b \in B_a} \chi_{a,b} y_b \quad \forall a \in A, \forall k \in K, \quad (23)$$

$$x_p \in \{0,1\} \qquad \forall k \in K, p \in P_k, \quad (24)$$

$$y_b \in \{0,1\} \qquad \forall a \in A, b \in B_a. \quad (25)$$

What we are doing in the project

Adapt the DA to lagrangean decomposition

- decompose path variables . . . straightforward
- decompose configuration variables . . . less trivial
- Add reduntant constraints
- Build lagrangean relaxation
- Identify expressions for build dual variables

Smart Pricing

predict which arcs

are used by each demand

Use to

- Inizialize restricted master problem
- sparcify graph on which pricing is performed

Smart Matheuristic

Based on a bipartite graph representations of a MIP

Conclusions

- Ongoing project
- Many different works in progress
- Split in several different working groups
- Open software
- Real life instances