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Input

I Directed graph G = (V,A),

I Arc capacity ca ∈ Z+ (MB/s),

I Arc unitary routing cost ra ∈ Z+,

I Set K of demands with for each k ∈ K:
I sk ∈ V : source of the demand k,
I tk ∈ V : target of the demand k,
I bk ∈ V : bandwith of the demand k.



Unsplittable Multicommodity Flow Problem (UMFP)

Find for each demand k ∈ K an sktk-path p∗k such that:

I the capacities are satisfied (the total bandwith of the demands
routed through an arc is no more than its capacity):∑

k∈K:a∈p∗k

bk ≤ ca

I the sum of the costs of the paths is minimum:

∑
k∈K

bk ×∑
a∈p∗k

ra





Compact Formulation

Variables

xka =

{
1 if k is routed through arc a,
0 otherwise,

for all arcs a ∈ A and all demands k ∈ K.

min
∑
a∈A

ra
∑
k∈K

bkx
k
a

∑
a∈δout(v)

xka −
∑

a∈δin(v)

xka =

 bk if v = sk,
−bk if v = tk,
0 otherwise,

∀v ∈ V,∀k ∈ K,

(1)∑
k∈K

bkx
k
a ≤ ca ∀a ∈ A,

(2)

xka ∈ {0, 1} ∀k ∈ K, a ∈ A.
(3)



Extended Formulation

Notations

I For a demand k ∈ K, let Pk denote the set of sktk-paths,

I For a path p and an arc a, let

χa,p =

{
1 if a belongs to p,
0 otherwise.



Extended Formulation

Variables

xp =

{
1 if k is routed through path p,
0 otherwise,

for all demands k ∈ K and all paths p ∈ Pk.

min
∑
a∈A

ra
∑
k∈K

bk
∑
p∈Pk

χa,pxp∑
p∈Pk

xp = 1 ∀k ∈ K, (4)

∑
k∈K

bk
∑
p∈Pk

χa,pxp ≤ ca ∀a ∈ A, (5)

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk. (6)



Column generation and rounding based approach

Heuristic algorithm

1. Compute the linear relaxation of the extended formulation

2. Apply rounding procedure to obtain a solution



Linear relaxation

Solve the linear relaxation with column generation.

I λ: dual variables associated with inequalities (4),

I µ: dual variables associated with inequalities (5).

Pricing problem
Looking for a path p̄ ∈ Pk̄ with negative reduced cost:

bk̄
∑
a∈p̄

(ra + µa)− λk̄ < 0

It reduces to compute a shortest path with nonnegative costs
(polynomial).

Let x∗ denote the computed optimal solution of the linear relaxation.



Rounding procedure

Try several rounding attempts and return the best solution found.

Rounding attempt

1. Randomly order the demands

2. For each demand k ∈ K (following the order):

2.1 Let P̄k ⊆ Pk be the set of paths p such that:
I x∗p > 0,
I the remaining capacities are enough to route k through p.

2.2 If P̄k = ∅:
2.2.1 Compute an sktk-shortest path p∗k considering only arcs having

remaining capacity no less than bk. If no such a path exists, STOP.

2.3 Else:

2.3.1 Sample a path p∗k in P̄k with probability

x∗p∑
p∈P̄k

x∗p
for all paths p ∈ P̄k

2.4 Route k through p∗k and decrease arc capacities accordingly.



Algorithm improvements

Final objectives
Using Machine learning and Combinatorial Optimization, improve the
baseline algorithm by:

I decreasing its running time, especially
the time necessary to solve the linear
relaxation,

I improving the gap:

I finding better solutions,
I improving the quality of the

lower bound (linear relaxation).



1 - Dual Ascent

The Dual Ascent method:

I generates dual feasible solutions for the linear relaxation of the
problem;

I is faster than simplex-based methods;

I is based on a parametric relaxation of the original SP problem;

I is based on a Lagrangian relaxation of the problem combined with
sub-gradient optimization;

I is suitable to solve the restricted master problem in a column
generation framework.

The generated dual feasible solution:

I provides a strong bound;

I is obtained by solving simpler and smaller independent subproblems.



Comparison with classic Lagrangian relaxation

Given a generic problem P:

min c>x

s. t. Ax = b

x ≥ 0

(Classic) Lagrangian relaxation ∀λ ∈ Rm:

φ(λ) = min
x≥0

(c−A>λ)>x+ λ>b

The problem:

max
λ∈Rm

φ(λ)

is the dual of P.



Formulation

Notation:

I M = {1, . . .m}: set of objects (e.g. customers) (rows)

I N = {1, . . . n}: set of subsets of objects (e.g. feasible routes) (columns)

I Rj ⊂M , j ∈ N : subsets of objects (e.g. customers visited in route j)

I cj : cost of subset j

I Ni ⊂ N := {j ∈ N |i ∈ Rj}: set of columns covering row i

Find a minimum-cost family of subsets Rj , j ∈ N which is a partition of M .

Formulation

min
∑
j∈N

cjxj

s. t.
∑
j∈Ni

xj = 1 ∀i ∈M

xj ∈ {0, 1} ∀j ∈ N

Example

min c1x1 + c2x2 + c3x3

s. t.

1 0 1
1 0 0
0 1 1

x1

x2

x3

 =

1
1
1


x1, x2, x3 ∈ {0, 1}.



Formulation (Primal, linear relaxation)

(P ) min zP =
∑
j∈N

cjxj

s. t.
∑
j∈Ni

xj = 1 ∀i ∈M [ui]

xj ≥ 0 ∀j ∈ N

Dual problem formulation

(D) max zD =
∑
i∈M

ui

s. t.
∑
i∈Rj

ui ≤ cj ∀j ∈ N

ui ∈ R ∀i ∈M



Introducing new variables

Replace variables
Replace variable xj by |Rj | variables
yij ∈ {0, 1} for i ∈ Rj :
I yij = 1 ⇐⇒ row i is covered by

column j;

Associate positive weights qi > 0 with rows:

xj =
∑
i∈Rj

qi
q(Rj)

yij

where
q(Rj) :=

∑
i∈Rj

qi

If xj = 1 then yij = 1 ∀i ∈ Rj
If xj = 0 then yij = 0 ∀i ∈ Rj

1 0 1
1 0 0
0 1 1

x1

x2

x3

 =

1
1
1





Reformulation

Parametric relaxation (PR) of SP problem

min zRP (q) =
∑
j∈N

∑
i∈Rj

cj
qi

q(Rj)
yij (7)

s. t.
∑
j∈Ni

∑
k∈Rj

qk
q(Rj)

ykj = 1 ∀i ∈M (8)

∑
j∈Ni

yij = 1 ∀i ∈M (9)

yij ≥ 0 ∀i ∈M, j ∈ N (10)



Lagrangian relaxation

We relax constraints (8) with vector of multipliers λ ∈ Rm:

min zLRP (λ, q) =
∑
i∈M

(
∑
j∈Ni

qi
(cj − λ(Rj))

q(Rj)
yij + λi)

s. t.
∑
j∈Ni

yij = 1 ∀i ∈M

yij ≥ 0 ∀i ∈M, j ∈ N

where λ(Rj) =
∑
i∈Rj

λi.

This is separable into m independent problems.
Let

c̃j :=
(cj − λ(Rj))

q(Rj)
.



Solutions of a subproblem

For each i ∈M , each subproblem is:

min ziLRP (λ, q) =
∑
j∈Ni

qic̃jy
i
j + λi

s. t.
∑
j∈Ni

yij = 1

yij ≥ 0 ∀j ∈ N.

Let ji ∈ Ni such that
c̃ji = min

j∈Ni

c̃j

The solution is given by:

yij =

{
1 if j = ji,

0 otherwise

ziLRP (λ, q) = c̃jiqi + λi.



Dual feasible solution

zLRP (λ, q) =
∑
i∈M

(c̃ji(λ, q)qi + λi)

Theorem The optimal solution of the decomposed problem provides a
feasible dual solution:

ui := c̃ji(λ, q)qi + λi

where ji is defined above, with dual value equal to zLRP (λ, q).

Idea of the proof It is easy to check that
∑
i∈Rj

ui ≤ cj ∀j ∈ N .

Corollary For all λ ∈ Rm, q > 0:

zLRP (λ, q) ≤ z∗D

where z∗D is the optimal value of the dual problem (D).



The Classical Lagrangian Relaxation (CLR)

min zCLR(λ) =
∑
j∈N

(cj−λ(Rj))xj+
∑
i∈M

λi s.t. 0 ≤ xj ≤ 1 ∀j ∈ N

Let ĉj(λ) := cj − λ(Rj)

Solution
Let H ⊂ N,H := {j ∈ N | ĉj(λ) < 0}. Therefore: xj = 1 if j ∈ H and 0
otherwise. zCLR(λ) =

∑
j∈H ĉj(λ) +

∑
i∈M λi

Theorem
zLRP (λ, q) ≥ zCLR(λ)



What we are doing in the project

I Adapt the DA to our problem
I inequalities instead of equalities
I coefficients greater than one everywhere

I Compare with other dual ascent approaches

I Use DA for removing LP solver



3 - Cutting planes

Capacity inequalities

I Volumes of objects ⇒ demand bandwiths,

I Capacity of the knapsack ⇒ arc capacity.

Inequalities valid for the knapsack polytope can be used to strengthen
the linear relaxation of UMFP

Cover inequalities
For any arc a ∈ A, a cover C of a is a subset of K satisfying∑
k∈C b

k > ca.

∑
k∈C

(
∑
p∈Pk

χa,pxp) ≤ |C|−1
for all arcs a ∈ A
and for all minimal covers C of a

(11)



Lagrangian Decomposition based formulation
I Duplicate variables in the compact formulation,

I Dualize the linking equations,

I Apply Dantzig-Wolfe reformulation for both types of variables

min
∑
a∈A

ra
∑
k∈K

bkx
k
a

∑
a∈δout(v)

xka −
∑

a∈δin(v)

xka =

 1 if v = sk,
−1 if v = tk,
0 otherwise,

∀v ∈ V,∀k ∈ K,

(12)∑
k∈K

bky
k
a ≤ ca ∀a ∈ A,

(13)

xka = yka ∀k ∈ K, a ∈ A,
(14)

xka ∈ {0, 1} ∀k ∈ K, a ∈ A.
(15)



Lagrangian Decomposition based formulation

I Pk: set of sktk-paths for k ∈ K
I Ba: set of patterns, ie sets of demands which can all be routed

through arc a at the same time, for a ∈ A

min
∑
a∈A

ra
∑
k∈K

bk
∑
p∈Pk

χa,pxp∑
p∈Pk

xp = 1 ∀k ∈ K, (16)

∑
b∈Ba

yb = 1 ∀a ∈ A, (17)

∑
p∈Pk

χa,pxp =
∑
b∈Ba

χa,byb ∀a ∈ A,∀k ∈ K, (18)

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk, (19)

yb ∈ {0, 1} ∀a ∈ A, b ∈ Ba. (20)



Lagrangian Decomposition based formulation

I Pk: set of sktk-paths for k ∈ K
I Ba: set of patterns, ie sets of demands which can all be routed

through arc a at the same time, for a ∈ A

min
∑
a∈A

ra
∑
k∈K

bk
∑
p∈Pk

χa,pxp∑
p∈Pk

xp = 1 ∀k ∈ K, (21)

∑
b∈Ba

yb≤1 ∀a ∈ A, (22)

∑
p∈Pk

χa,pxp≤
∑
b∈Ba

χa,byb ∀a ∈ A,∀k ∈ K, (23)

xp ∈ {0, 1} ∀k ∈ K, p ∈ Pk, (24)

yb ∈ {0, 1} ∀a ∈ A, b ∈ Ba. (25)



What we are doing in the project

I Adapt the DA to lagrangean decomposition
I decompose path variables . . . straightforward
I decompose configuration variables . . . less trivial

I Add reduntant constraints

I Build lagrangean relaxation

I Identify expressions for build dual variables



Smart Pricing

ML
instance predict which arcs

are used by each demand

Use to

I Inizialize restricted master problem

I sparcify graph on which pricing is performed



Smart Matheuristic

ML

instance

linear relaxation

predict high quality solutions



ML - models for 2 and 4

Based on a bipartite graph representations of a MIP

GNN

variable

constraints

predict values of variables



Conclusions

I Ongoing project

I Many different works in progress

I Split in several different working groups

I Open software

I Real life instances
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